

## **EMERGENCY MEDICINE PRAC** Improving atient Gar

EBMEDICINE.NET

AN EVIDENCE-BASED APPROACH TO EMERGENCY MEDICINE

# The Diagnosis And Treatment **Of STEMI In The Emergency** Department

A 66-year-old man is wheeled into a community hospital's emergency department by EMS on a Saturday morning. He appears anxious, with beads of sweat on his forehead and pale skin. The paramedics indicate that the patient called 9-1-1 and reported chest pain that lasted for 30 minutes. They arrived on the scene 12 minutes after the call to find him doubled over. He described his discomfort as a "worse version of the pains that I've been having over the past few weeks," adding "I'm scared that I might be having a heart attack." The patient was given 325 mg of aspirin to chew at the scene and 2 sublingual nitroglycerin tablets that have not had any effect on his symptoms. Upon arrival, he is 55 minutes into this episode of chest pain. You have IV access, are providing him with supplemental oxygen, and have connected him to a cardiac monitor. The only lead shown is V2, and you see what look like depressions of the ST segment. You request a 12-lead ECG, and a clinical assistant begins to connect the leads. The nurse draws up basic labs, troponin I and CK-MB, and asks, "What would you like to do, doctor?" just as the 12lead ECG prints out, showing 1.0- to 1.5-mm ST-segment elevations in leads II, III, and aVF. You are asking yourself the same question...

cute myocardial infarction (MI) is the leading cause of death A in the United States<sup>1</sup> and in much of the developed world. It is also a rising threat in developing countries.<sup>2</sup> Rapid diagnosis and treatment of MI is one of the hallmark specializations of emergency medicine (EM) because (1) emergency departments (EDs) are a common health care entry point for patients experiencing MI-associated

## June 2009 Volume 11, Number 6

Authors

#### Joshua M. Kosowsky, MD

Clinical Director, Department of Emergency Medicine, Brigham and Women's Hospital, Assistant Professor, Harvard Medical School, Boston, MA

#### Maame Yaa A.B. Yiadom, MD, MPH

Resident, Harvard Affiliated Emergency Medicine Residency, Brigham and Women's and Massachusetts General Hospitals, Boston, MA

**Peer Reviewers** 

#### Luke K. Hermann, MD

Director, Chest Pain Unit, Assistant Professor, Department of Emergency Medicine, Mount Sinai School of Medicine, New York, NY

#### Andy Jagoda, MD, FACEP

Professor and Vice-Chair of Academic Affairs, Department of Emergency Medicine, Mount Sinai School of Medicine; Medical Director, Mount Sinai Hospital, New York, NY

#### **CME** Objectives

Upon completion of this article, you should be able to:

- 1. Manage STEMI in the ED setting using evidence-based practices.
- 2. Use a methodological approach to patients with chest pain who are at high risk of infarction.

Date of original release: June 1, 2009 Date of most recent review: May 1, 2009 Termination date: June 1, 2012 Medium: Print and online Method of participation: Print or online answer form and evaluation

Prior to beginning this activity, see "Physician CME Information" on the back page.

#### **Editor-in-Chief**

Andy Jagoda, MD, FACEP

Professor and Vice-Chair of Academic Affairs, Department of Emergency Medicine, Mount Sinai School of Medicine; Medical Director, Mount Sinai Hospital, New York, NY

#### **Editorial Board**

William J. Brady, MD Professor of Emergency Medicine and Medicine Vice Chair of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, VA

#### Peter DeBlieux, MD

Professor of Clinical Medicine, LSU Health Science Center: Director of Emergency Medicine Services, University Hospital, New Orleans, LA

#### Wvatt W. Decker. MD

Chair and Associate Professor of Emergency Medicine, Mayo Clinic College of Medicine, Rochester, MN

Francis M. Fesmire, MD, FACEP Director, Heart-Stroke Center, Erlanger Medical Center; Assistant

Professor, UT College of Medicine, Chattanooga, TN Michael A. Gibbs, MD, FACEP

Chief, Department of Emergency Medicine, Maine Medical Center, Portland, ME

Steven A. Godwin, MD, FACEP Assistant Professor and Emergency Medicine Residency Director, University of Florida HSC, Jacksonville, FL

Gregory L. Henry, MD, FACEP CEO, Medical Practice Risk Assessment, Inc.; Clinical Professor of Emergency Medicine, University of Michigan, Ann Arbor, MI

John M. Howell, MD, FACEP Clinical Professor of Emergency Medicine, George Washington University, Washington, DC;Director of Academic Affairs, Best Practices, Inc, Inova Fairfax Hospital, Falls Church, VA

#### Keith A. Marill. MD

Assistant Professor, Department of Emergency Medicine, Massachusetts Corey M. Slovis, MD, FACP, FACEP General Hospital, Harvard Medical School, Boston, MA

Charles V. Pollack, Jr., MA, MD, FACEP Chairman, Department of

Emergency Medicine, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, PA

Michael S. Radeos, MD, MPH Assistant Professor of Emergency Medicine, Weill Medical College of Cornell University, New York, NY. Robert L. Rogers, MD, FACEP,

FAAEM, FACP Assistant Professor of Emergency Medicine, The University of Maryland School of Medicine, Baltimore, MD

Alfred Sacchetti, MD, FACEP Assistant Clinical Professor Department of Emergency Medicine, Research Editors Thomas Jefferson University, Philadelphia, PA

Scott Silvers, MD, FACEP Medical Director, Department of Emergency Medicine, Mayo Clinic, Jacksonville, FL

Professor and Chair, Department of Emergency Medicine, Vanderbilt

#### University Medical Center, Nashville, TN

Jenny Walker, MD, MPH, MSW Assistant Professor; Division Chief, Family Medicine, Department of Community and Preventive Medicine, Mount Sinai Medical Center, New York, NY

Ron M. Walls, MD Professor and Chair, Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

Scott Weingart, MD Assistant Professor of Emergency Medicine, Elmhurst Hospital Center, Mount Sinai School of Medicine, New York, NY

Nicholas Genes, MD, PhD Chief Resident, Mount Sinai Emergency Medicine Residency, New York, NY

Lisa Jacobson, MD Mount Sinai School of Medicine, Emergency Medicine Residency, New York, NY

#### International Editors

Valerio Gai, MD Senior Editor, Professor and Chair, Department of Emergency Medicine University of Turin, Turin, Italy

Peter Cameron, MD Chair, Emergency Medicine Monash University; Alfred Hospital, Melbourne, Australia

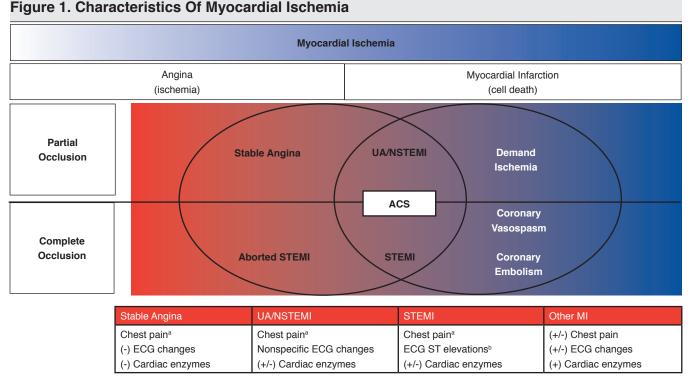
Amin Antoine Kazzi, MD, FAAEM Associate Professor and Vice Chair, Department of Emergency Medicine, University of California, Irvine; American University, Beirut, Lebanon

Hugo Peralta, MD

Chair of Emergency Services, Hospital Italiano, Buenos Aires, Argentina

Maarten Simons, MD, PhD Emergency Medicine Residency Director, OLVG Hospital, Amsterdam. The Netherlands

Accreditation: This activity has been planned and implemented in accordance with the Essentials and Standards of the Accreditation Council for Continuing Medical Education (ACCME) through the sponsorship of EB Medicine. EB Medicine is accredited by the ACCME to provide continuing medical education for physicians. Faculty Disclosure: Dr. Kosowsky, Dr. Yiadom, Dr. Hermann, Dr. Jagoda, and their related parties report no significant financial interest or other relationship with the manufacturer(s) of any commercial product(s) discussed in this educational presentation. Commercial Support: This issue of Emergency Medicine Practice did not receive any commercial support.


symptoms, (2) MI is a life-threatening condition, and (3) the emergency medical system has developed tools to manage it effectively. A patient whose MI is missed on evaluation has a 25% likelihood of a very poor outcome,<sup>3</sup> which makes this a "can't miss" diagnosis for the EM clinician. It is worth noting that missed MI has long been the most common justification for monetary awards in EM litigation.<sup>3</sup>

Acute coronary syndrome (ACS) is one of many causes of MI and describes cardiac ischemia that results when a blood clot, or thrombus, acutely narrows an artery supplying myocardial cells with blood. Specifically, ACS is ischemia due to atherosclerotic plaque rupture. Blood clotting factors interact with the plaque's contents and trigger the formation of a superimposed blood clot that narrows or, in the case of an ST-segment elevation myocardial infarction (STEMI), fully occludes the blood vessel lumen. ACS includes unstable angina and non-ST segment elevation myocardial infarction (UA/NSTEMI) as a combined phenomenon, as well as STEMI, but it is differentiated from other forms of cardiac ischemia such as demand ischemia or coronary vasospasm.

In UA/NSTEMI, a clot narrows the lumen enough to limit blood flow and cause myocardial ischemia. This ischemia often leads to chest pain or chest pain-equivalent symptoms (**see the History section**) of a different pattern from the patient's baseline experience. This can be chest pain of a different quality or frequency for a patient with a history of angina or new chest pain in a patient who has never experienced these symptom before. ECG changes may or may not be seen with ischemia alone. Ischemia may lead to infarction that involves the myocardial tissue but falls short of affecting the full thickness of the myocardial wall as is the case with STEMI. The infarction is evidenced by eventual elevation of cardiac enzymes (troponin and/or creatine kinase isoenzyme MB [CK-MB]) and ECG changes including ST-segment depressions, inverted T waves, or (the most common finding) non-specific ST-segment changes. (See Figure 1.)

In contrast, a STEMI typically occurs when this same process leads to complete occlusion of a coronary artery with transmural, or full thickness, myocardial wall infarction. (**See Figure 1**.) The ECG will show ST-segment elevations in the area of the heart fed by the affected blood vessel. Any ST-segment elevation is suggestive of a STEMI. However, ECG changes must meet STEMI criteria (**see the Emergency Department Evaluation section**) in order for this diagnosis to be made. <sup>4-6</sup>

In all cases of cardiac ischemia, treatment objectives are to increase the delivery of blood to myocytes beyond the obstructive lesion and to limit the myocytes' demand for oxygen-carrying and metabolite-removing blood. What differentiates STEMI therapy from treatment of other cardiac ischemic



Abbreviations: ACS, acute coronary syndromes; ECG, electrocardiogram; MI, myocardial infarction; STEMI, ST-segment elevation myocardial infarction; UA/NSTEMI, unstable angina and non–ST-segment elevation myocardial infarction; <sup>a</sup> It is possible to have angina or myocardial infarction without chest pain. (See Common Pitfalls and Medico-Legal section.); <sup>b</sup> ST elevations must meet STEMI criteria in order to be diagnostic. (See Diagnosis section.)

Note: To view full color versions of the figures in this article, visit www.ebmedicine.net/topics.

conditions is the primary focus on immediate reperfusion with percutaneous coronary intervention (PCI) performed in a cardiac catheterization laboratory or with fibrinolytic agents given intravenously.<sup>7</sup>

## **Critical Appraisal Of The Literature**

Ovid MEDLINE, the Cochrane Database of Systematic Reviews, and the National Guideline Clearinghouse were searched for articles relating to STEMI, with a focus on publications and consensus statements published after January 1, 2000. The references were then searched for related articles. Secondary references that were used by committees to develop consensus statements and guidelines were also reviewed. After the primary draft of this article was completed, focused follow-up literature reviews were conducted in August 2008 and March 2009 to identify articles published after the December 2007 release of the American College of Cardiology (ACC) and American Heart Association (AHA) Focused Update for the Management of Patients with STEMI.<sup>8</sup>

## Cardiac Anatomy And MI Pathophysiology

As noted above, STEMI occurs when a thrombus forms in a coronary artery, completely occluding the vessel and preventing blood from flowing effectively to distal tissues. Under normal conditions, the depolarizing signal sent through the heart "zeros out" at the ST segment, which corresponds with the time between ventricular depolarization (the QRS complex) and ventricular repolarization (the T wave). As tissue dies, or infarcts, potassium leaks out of the cells, altering the charge over this portion of the heart. In the setting of ischemia, one may find a range of abnormalities including T-wave inversions and alterations of ST-segment levels and morphology. The change that is most specific to STEMI is an elevation of the ST segment on ECG results. This is due to transmural tissue infarction, which causes significant potassium leakage. The excess potassium creates a positive local tissue charge, reflected by the elevation of the ST segment.<sup>9-11</sup>

Blockage of particular coronary arteries leads to predictable regions of infarction. The pacer (or Purkinje) cells that run within these locations may also be involved. Death of Purkinje cells can create predictable rhythm disturbances.<sup>12</sup>

Identification of the anatomic distribution of ischemia and/or infarction is not an essential step in the diagnosis of a STEMI. It is important, however, to recognize that specific areas of infarction increase the likelihood of certain complications and that this information should be factored into treatment and monitoring decisions.<sup>14</sup>

Table 1 shows ECG changes and the associated major coronary artery branches, with the likely ana-

tomical areas of damage and potential complications of each. Matching ECG changes with the anatomy is helpful in mapping out the distribution of involved tissue by the presence of strain patterns (T-wave inversions, ST depressions) or infarction (ST-segment elevations with or without contiguous depressions). Caution should be taken when applying this concept in patients with severe coronary heart disease who are likely to have significant collateral circulatory flow. Rarely, congenital anatomical variations can also make it difficult to infer the distribution of damage and likely consequences.

## **Out-Of-Hospital Care**

In the prehospital system, the management of patients with a suspected STEMI is driven by three goals: (1) delivering patients to an appropriate health care facility as quickly as possible, (2) preventing sudden death and controlling arrhythmias by using acute cardiac life support (ACLS) protocol when necessary, and (3) initiating or continuing management of patients during interfacility transport. Patients who arrive via an emergency medical services (EMS) transport vehicle often have already received some level of care. Basic life support ambulance crews are likely to have administered aspirin and oxygen, used an automated external defibrillator in the event of cardiac arrest, and obtained a basic history from the scene. Advance life support ambulances are additionally capable of providing nitroglycerin and ACLS protocol medications if necessary. Critical care transport vehicles have trained paramedics and nurses who are capable of providing intensive care-level management en route. In some EMS systems, 12-lead ECGs can be produced en route and the results sent to the receiving facility for evaluation before arrival. In regions where transport times are long, EMS teams may be trained and equipped to provide fibrinolytic therapy to STEMI patients before arrival without apparent contraindications. In areas with tertiary care centers within a reasonable distance, EMS teams may bypass small hospitals and deliver patients to facilities with PCI capability. (See Controversies and Cutting Edge section.) In addition, patients may be transported to or from a facility after fibrinolytic therapy for further management or when reperfusion is unsuccessful.

In all cases, direct sign-out from the EMS team to the treating emergency clinician is an important time-saving practice. A helpful checklist to get from the EMS team includes the following information.

- 1. The person who initiated EMS involvement (patient, family, bystander, transferring hospital) and why
- 2. Complaints at the scene
- 3. Initial vital signs and physical examination results, as well as notable changes

- 4. Therapies given prior to arrival and the patient's response
- 5. ECGs done at an outside hospital or en route, noting the context in which notable ECGs were printed
- 6. The patient's code status (if known)
- 7. Family contacts for supplemental information and family members who may be on their way to the ED, as they may be helpful in completing or verifying the history

## **Emergency Department Evaluation**

#### Diagnosis

All patients with chest pain suggestive of ACS should have an ECG completed within 10 minutes of arrival at the ED and an early evaluation by an emergency clinician. Unlike most medical conditions, STEMI can be diagnosed with a single test before a patient's evaluation is complete.<sup>18</sup> Criteria for the diagnosis of STEMI have been proposed by the ACC/AHA and are in agreement with those of the European Society of Cardiology (ESC). The ACC/AHA and the ESC concur that STEMI exists when the ECG of the patient presenting with acute chest pain shows  $(1) \ge$ 1-mm ST-segment elevation in at least 2 anatomically contiguous limb leads (aVL to III, including -aVR), (2) ≥1-mm ST-segment elevation in a precordial lead V4 through V6,  $(3) \ge 2$ -mm ST-segment elevation in V1 through V3, or (4) a new left bundle branch block.<sup>19</sup> (Figures 2 and 3.) Laboratory tests, such as troponin and CK-MB measurements, are not a component of

a STEMI diagnosis. However, they are helpful in the event that a STEMI is not diagnosed and other forms of MI are still suspected. (**See Figure 1, page 2**.) Every effort should be made to begin reperfusion immediately when ECG changes that are diagnostic for a STEMI are present.<sup>20,21</sup>

#### History

The patient's history should be taken while the ECG is being performed and initial therapies are being administered. Remember that time is myocardium. Ask the patient if he or she is having chest pain, when it started, what it feels like (stabbing, crushing, pressure, aching), and if it radiates to other parts of the body. Chest pain is the cardinal symptom of MI, but it is not always present, so be sure to ask about jaw/shoulder/ neck/arm pain, dizziness, nausea, and shortness of breath. It is also important to elicit whether or not the patient has felt anything like this before, how it was similar or different, if he or she did anything that made it better or worse, or if he or she took anything at home to help with the discomfort. Information about past medical problems, past surgical procedures (when performed), medications taken (if the patient remembers), and any allergies is also helpful.

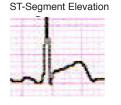
Historically, clinicians have been taught to review with these patients the major risk factors for cardiovascular disease: hypertension, known coronary artery disease, diabetes, hyperlipidemia, smoking, male sex, and an MI or early cardiac death in a first-degree family member before age 45 in men and 55 in women. Although colleagues in cardiol-

 Table 1. Infarction Distribution With ST-Segment Elevation Myocardial Infarction And

 Consequences<sup>4,15-17</sup>

| ST Elevations                                          | Affected Coronary Artery                                                                                                                                                               | Area of Damage                                                                        | Complications                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_1$ through $V_4$                                    | Left coronary artery: Left anterior descending                                                                                                                                         | Anterolateral heart wall<br>Septum<br>Left ventricle<br>His bundle<br>Bundle branches | Left ventricular dysfunction: Decreased carbon dioxide<br>congestive heart failure<br>Left bundle-branch block<br>Right bundle-branch block<br>Left posterior fascicular block<br>Infranodal block (2° or 3°)                                                                                      |
| $V_5$ through $V_6$ , I, aVL                           | Left coronary artery: Left circum-<br>flex branch                                                                                                                                      | Left lateral heart wall                                                               | Left ventricular dysfunction: Decreased carbon dioxide<br>congestive heart failure<br>Infranodal block (2°or 3°)                                                                                                                                                                                   |
| II, III, aVF, V₄R                                      | Right coronary artery: Posterior descending branch                                                                                                                                     | Inferior heart wall<br>Right ventricle                                                | <ul> <li>Hypotension (particularly with nitroglycerin and morphine, which can decrease preload)</li> <li>Supranodal 1° heart block</li> <li>Atrial fibrillation/flutter, premature atrial contractions</li> <li>Infranodal block (2° and 3°)</li> <li>Papillary muscle rupture (murmur)</li> </ul> |
| $V_8$ and $V_9$ (or ST depressions in $V_1$ and $V_2)$ | <ul> <li>90% Right coronary artery: Posterior descending branch</li> <li>10% Left coronary artery: Left circumflex branch (will see elevations in V₅ through V<sub>6</sub>)</li> </ul> | Posterior heart wall                                                                  | Hypotension<br>Supranodal 1° heart block<br>Infranodal block (2° and 3°)<br>Atrial fibrillation/flutter, premature atrial contractions<br>Papillary muscle rupture (murmur)                                                                                                                        |

ogy and internal medicine may be interested in these details, they do not affect management in the ED. Active chest pain syndrome or a diagnostic ECG trump all other risk factors in a workup for MI. Time is best spent administering initial therapies and/or mobilizing resources for reperfusion.<sup>25</sup>


If the patient's ECG shows a STEMI, immediately ask about contraindications to fibrinolytic therapy, as this information will aid decisions about the appropriate reperfusion therapy. (See Table 2.)

#### **Physical Examination**

Aside from the vital signs, which are a critical dashboard in managing a STEMI or other ACS, a physical examination has limited usefulness in the diagnosis and initial treatment plan for patients with a STEMI. However, a focused physical examination can be

#### Figure 2. STEMI Diagnostic Criteria<sup>19,22,23</sup>

American College of Cardiology/ American Heart Association ST-Segment Elevation Myocardial Infarction (STEMI) Diagnosis Guidelines



In a patient presenting with active chest pain, a 12-lead electrocardiogram showing:

- 1. ST-segment elevation  $\ge 1$ mm (0.1 mV) in 2 or more adjacent limb leads (from aVL to III, including -aVR),
- ST-segment elevation ≥ 1 mm (0.1 mV) in precordial leads V4 through V6,
- ST-segment elevation ≥ 2 mm (0.2 mV) in precordial leads V1 through V3, or
- 4. New left bundle-branch block¥

\* Positive tests for cardiac enzymes troponin and creatinine kinase isoenzyme MB are helpful, but not essential. Therapy should not be delayed while awaiting results.

\* Reciprocal depressions (ST depressions in the leads corresponding to the opposite side of the heart) make the diagnosis of STEMI more specific.

¥ See the Special Circumstances section for details on diagnosing STEMI in the setting of an old left bundle-branch block.

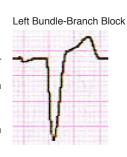
(ECG images from Brady W, Harrigan RA, Chan T. Section III: acute coronary syndromes. In: Marx A, ed-in-chief. Hickberger RS, Walls RM, senior eds. Rosen's Emergency Medicine Concepts and Clinical Practice. Part 3. 6th ed. St Louis, MO; CV Mosby; 2006:1165-1169.) helpful in identifying causes or complications of MI. If an ECG is diagnostic for a STEMI, the examination should be brief to evaluate for the signs listed in Table 3 (**page 8**) while the focus remains on initiating immediate reperfusion.

If the ECG is not diagnostic for a STEMI or other ACS condition, the examination can be more extensive. The information gathered can help emergency clinicians to sort through and prioritize items on the differential diagnosis.<sup>25</sup> However, it is important to note that even with the most careful evaluation, 1% to 5% of patients with an MI will have completely normal ECG results upon presentation.<sup>26</sup> In these cases, cardiac biomarker laboratory testing is helpful in identifying whether other forms of MI have occurred.

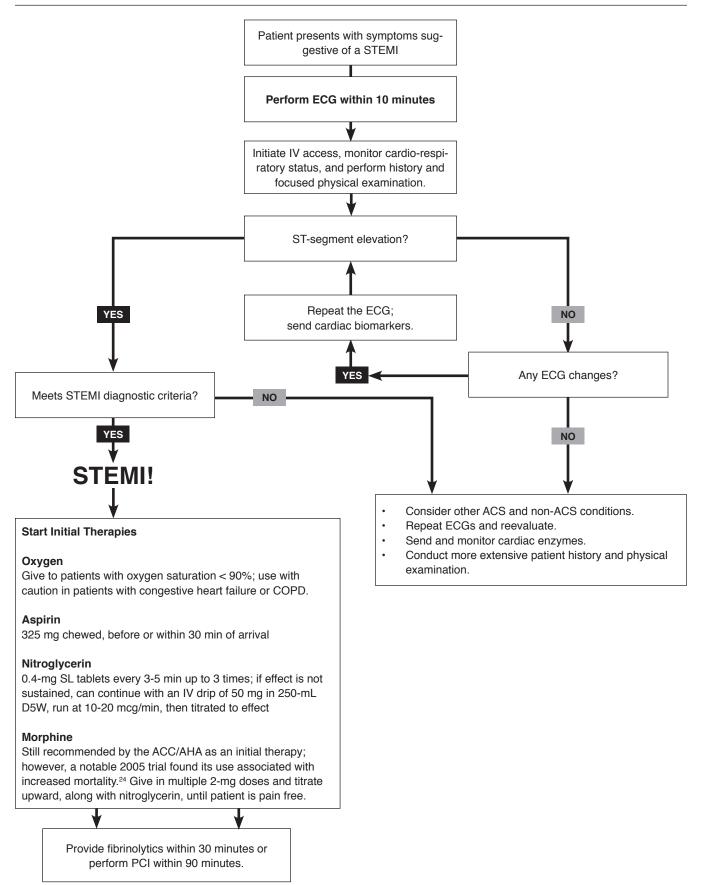
#### **Differential Diagnosis**

For patients presenting with acute chest pain, consider the following diagnoses:

- Aortic Dissection (AoD)
- Pneumothorax
- Pulmonary embolism
- Arrhythmia
- Myocarditis
- Pericarditis with or without cardiac tamponade
- Esophageal rupture or spasm
- Hypertensive urgency or emergency
- Gastroesophageal reflux disease
- Intercostal muscle strain
- Costochondritis


The predictive value of an ST-segment elevation on ECG is highly dependent on the incidence of the disease in the population into which the patient fits. For example, ST-segment elevations in a young person are less likely to be associated with MI because there is a lower incidence of MIs in younger populations. This fact, in and of itself, reduces the positive predictive value of the ECG as a diagnostic tool in this situation. For all patients, but particularly in the young, other causes of ST-segment elevation should be carefully investigated in the clinical context. (**See Table 4, page 8.**)

#### **Initial Therapies**


Much of what is considered standard of care for STEMI is based on the ACC/AHA guidelines, which are developed from a combination of the available evidence and consensus opinion amongst the guideline-writing group. In addition, the evidence for many common and emerging practices are controversial or under studied. For this reason, it is worth exploring these "initial therapies" in some detail.

#### Oxygen

Supplemental oxygen is given because of the theoretical benefit of maximizing oxygen delivery







ACC/AHA, American College of Cardiology/American Heart Association; ACS, acute coronary syndromes; ECG, electrocardiogram; IV, intravenous; O<sub>2</sub>, oxygen; PCI, percutaneous coronary intervention; SL, sublingual; STEMI, ST-segment elevation myocardial infarction.

in a patient with an ischemic condition. This was first recommended for myocardial infarction over 100 years ago.<sup>117</sup> However, there have been several studies dating back to the 1950s demonstrating concerning harmful effects.<sup>118-120</sup> Specifically, they have shown that when supplemental oxygen is given to non-hypoxic patients, it produces increased systemic vascular resistance and decreases cardiac output. In hypoxic patients, the data have varied between no effect to improvement.<sup>121</sup>

Our current practice is based on the first randomized controlled clinical trial done on the effects of oxygen therapy for MI patients.<sup>122</sup> It showed a reduction in MI-associated enzyme elevation, but these results did not achieve statistical significance (p=0.08). Given the small numbers involved in this study (n=151), it may have been underpowered to detect an actual clinical and/or statistical effect (type II error), but the results are not sufficient enough to support the routine administration of oxygen to all MI patients. In line with this evidence, the ACC/AHA's STEMI guidelines<sup>62</sup> only recommend supplemental oxygen for hypoxic patients. It is worth noting that all but one<sup>123</sup> of these studies were done before the advent of the pharmacologic agents, fibrinolytics, or PCI. In conclusion, the evidence is thin, and this highlights the need to re-consider the risks and benefits of oxygen therapy in both hypoxic and non-hypoxic patients, in the context of modern medical management of STEMI.<sup>124</sup>

Aspirin

Chewing an aspirin soon after the onset of symp-

toms has been shown to reduce mortality by 23%, as measured at 1 month after MI.<sup>30</sup> Aspirin is rapidly and maximally absorbed when chewed, and it takes effect in 60 minutes.<sup>31</sup> However, the benefits diminish greatly when aspirin is taken 4 hours after the onset of symptoms.<sup>30</sup> Over the years, dose recommendations have varied from 162 to 325 mg. Many studies have shown that the added bleeding risk associated with more than 162 mg of aspirin is minimal compared with the likely benefit, but a 2008 retrospective comparative study challenged this in the case of STEMI patients treated with fibrinolysis.<sup>32</sup> The authors concluded that the benefit of larger doses was outweighed by the proportionally increased bleeding risk in this subpopulation. If a patient is vomiting, aspirin can be given rectally with similar effect. A recent small study suggests that a 600-mg rectal suppository provides a sufficient level of salicylic acid within 90 minutes that meets or exceeds the level provided by standard doses of chewed oral aspirin.<sup>33</sup> If a patient has an aspirin allergy or significant active bleeding, a 300- or 600-mg bolus of clopidogrel can be given.<sup>34</sup> (See the Special Circumstances section for more details.)

#### Nitroglycerin

The vasodilatory effects of nitroglycerin increase blood flow to coronary arteries and help to alleviate spasmodic and ischemic pain.<sup>35</sup> In the pre-reperfusion era, early use was shown to limit infarct size and preserve ventricular function.<sup>36</sup> Nitroglycerin continues to be recommended for patients with a STEMI and active chest pain. However, the poten-

#### Table 2. Fibrinolytic Reperfusion Contraindications

#### A. Absolute Contraindications

- · Known structural central nervous system lesion (eg, arteriovenous malformation, primary or metastatic tumor)
- Any prior intracerebral hemorrhage
- Ischemic stroke within the last 3 months (excluding acute ischemic stroke within the last 3 hours)
- Significant closed head or facial injury within the last 3 months
- Suspicion of aortic dissection
- Active bleeding (excluding menses) or bleeding disorders

#### **B. Relative Contraindications**

- History of chronic, severe, and poorly controlled hypertension or severe hypertension (systolic blood pressure > 180 mm Hg or diastolic blood pressure > 100 mm Hg) on admission
- History of ischemic stroke within the prior 3 months
- · Dementia or other known intracranial pathology not noted above
- Traumatic or prolonged (> 10 minutes) cardiopulmonary resuscitation or noncompressible vascular punctures within the last 3 weeks
- · Major surgery within the last 3 weeks
- Internal bleeding within the last 3 to 4 weeks
- Pregnancy
- Active peptic ulcer disease
- · Current use of anticoagulants (the higher the international normalized ratio, the greater the risk of bleeding)
- Prior exposure (> 5 days) or prior allergic reaction to streptokinase or anistreplase (if taking these agents)

(Adapted from 2007 ACC/AHA STEMI Treatment Guidelines.)

tial benefits have to be balanced with the risks of hypotension and reflex tachycardia.

#### Morphine

Morphine blocks pain receptors and provides some anxiolysis, which is believed to reduce sympathetic tone and decrease myocardial metabolic demand. Its use has been a mainstay in the initial management of acute MI for decades. However, CRUSADE Initiative data, published as a 2005 case control study involving more than 17,000 patients, raised concerns that the use of morphine in patients with MI was associated with higher mortality. This excess mortality is believed to be attributed to morphine masking the symptoms of continued ischemia.<sup>37</sup> Despite the study's findings, morphine is still recommended as an initial therapy for STEMI by the ACC/AHA and the ESC, albeit with caution that the evidence for its use is less robust.<sup>8</sup>

#### **Beta-Blockers**

Beta-blockers reduce myocardial metabolic demand by decreasing heart rate and, to a lesser degree, myocardial contractility. Evidence supporting the use of beta-blockers in patients with acute MI arose from research demonstrating reduced rates of reinfarction and recurrent ischemia in those who received reperfusion therapy (fibrinolysis or PCI).<sup>38,39</sup> More recent evidence has shown that giving betablockers to all STEMI patients may lead to increased incidence of cardiogenic shock, which may outweigh the benefits.<sup>40</sup> In addition, a retrospective analysis of some older trial data failed to reproduce the previously reported benefits.<sup>41</sup>

The ACC/AHA currently recommends that an oral beta-blocker be given within 24 hours and that an IV beta-blocker is reasonable for patients who are hypertensive in the absence of (1) signs of heart failure; (2) evidence of a low cardiac output state; (3) post beta-blocker cardiogenic shock risk factors (age > 70 years, systolic blood pressure < 120 mm Hg, sinus tachycardia > 110 bpm or heart rate < 60 bpm, increased time since onset of symptoms of STEMI); or (4) other relative contraindications to beta blockade (PR interval > 0.24 s, second- or third-degree heart block, active asthma, or reactive airway disease). These recommendations are based on the results of COMMIT/CCS-2, a large randomized controlled trial that involved more than 45,000 patients.<sup>8,40</sup> Oral beta-blockers do not need to be started in the ED, and the more selective use of IV beta-blockers is a change from prior recommendations and common practice, which categorize their use as an initial therapy for patients with acute MI.

Once a diagnosis of STEMI is made, these initial therapies should not delay the primary goal: to initiate definitive treatment with either fibrinolytic therapy within 30 minutes or PCI within 90 minutes. If the ECG does not meet the STEMI diagnostic criteria and the patient has ongoing ischemic symptoms, the test should be repeated at reasonable intervals along with continuous cardiac monitoring. These patients may develop a STEMI later in the symptom course.<sup>9</sup>

#### **Definitive Treatment**

Once a STEMI is diagnosed, the next immediate decision is whether to rapidly reperfuse the infarcting

#### Table 3. Signs To Look For During Physical Examination Of A Patient With Chest Pain

| Sign                                                                                             | Concern                                                  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| New murmur?                                                                                      | Papillary muscle rupture or acute valvular insufficiency |
| Jugular venous pulsation elevation?                                                              | Right-sided heart failure                                |
| Slowed capillary refill? Weak pulse?                                                             | Cardiogenic shock                                        |
| Crackles or wheezes? Decreased breath sounds?                                                    | Congestive heart failure                                 |
| Hemiparesis? Pulse differential between upper vs lower extremities or left vs right extremities? | Aortic dissection                                        |

#### Table 4. Alternative Causes of ST-Segment Elevations

| Alternative Diagnosis                  | Clinical Context                                   |
|----------------------------------------|----------------------------------------------------|
| Pericarditis/myocarditis               | Fevers, recent radiation therapy                   |
| Benign early repolarization            | Young, male                                        |
| Left ventricular hypertrophy           | Hypertension                                       |
| Paced rhythm <sup>27</sup>             | Pacemaker implanted                                |
| Significant hyperkalemia <sup>28</sup> | Renal failure                                      |
| Coronary vasospasm                     | Cocaine or other stimulant use                     |
| Ventricular aneurysm                   | Prior infarction (usually associated with Q waves) |
| Spontaneous coronary artery dissection | Marfan or Ehlers-Danlos syndrome                   |
| Acute, severe emotional stressor       | Takasubo cardiomyopathy                            |

myocardium with fibrinolytic medications or with PCI via balloon angioplasty.

#### Fibrinolysis

Fibrinolytics are now widely available and easily accessible in most hospitals. The greatest benefit is derived when they are given within 1 to 3 hours after the onset of symptoms. Successful reperfusion rates range from 60% to 80%, but the chance of reperfusion success diminishes with time, even within this window.

The primary complications of fibrinolytics relate to excessive bleeding. Depending on where the bleeding occurs, it can also cause life-threatening problems such as large gastrointestinal tract bleeds, hemorrhagic stroke, and surgical wound dehiscence. As a result, a formal list of contraindications associated with an increased risk of hemorrhage has been compiled.<sup>4</sup> (**See Table 2, page 7.**) A patient with a yes response to any of the absolute contraindications in **Table 2A** is not a candidate for fibrinolysis. A yes response to any of the questions in **Table 2B** does not prohibit a patient from receiving fibrinolytic therapy, but it should raise significant caution in the mind of the deciding emergency clinician and weigh in favor of an alternative reperfusion plan.

The ACC/AHA guidelines recommend the initiation of fibrinolytic therapy within 30 minutes of a STEMI patient's contact with the medical system.<sup>8</sup> Reperfusion outcomes with this therapy, at 30 days post-intervention, are comparable to those with PCI when a patient has symptoms that are of short duration or when there is a low risk of bleeding or when achieving a door-to-balloon time of less than 90 minutes is not possible.<sup>42</sup> (See Table 6, page 11.) Most institutions have limited fibrinolytic options on their drug formulary. Emergency clinicians should know what options are available in advance and should be familiar with their specific characteristics and side effect profiles. (See Table 5, page 10.)

As noted earlier, once a fibrinolytic is administered, the complication of greatest concern is bleeding. The highest risk of bleeding occurs within the first 24 hours. Intracranial hemorrhage (ICH) is the most devastating complication. It occurs in less than 1% of patients<sup>43</sup> but carries a 55% to 65% mortality rate.<sup>44</sup> As a result, a computed tomographic (CT) scan of the head should be ordered for any post-fibrinolytic neurologic findings to rule out ICH. Also, all anticoagulants, antithrombotics, and antiplatelet agents should be held until ICH is ruled out.

#### **Percutaneous Coronary Intervention**

When available, prompt primary PCI in a cardiac catheterization laboratory is the preferred reperfusion option. If a facility has PCI capability, the STEMI should be reported as soon as the diagnosis is made, with a request to activate the catheterization laboratory emergently. (See the Controversies and Cutting Edge section for more on this topic.) When a facility lacks PCI capability, it may be feasible to coordinate a transfer (ambulance or helicopter transport) to another facility. In the process of identifying an accepting clinician for the transfer, a request should be made to activate the catheterization laboratory before the patient arrives. The goal is to have the patient achieve a door-to-balloon time of less than 90 minutes. The ability to achieve this goal should be incorporated into the decision of whether to use a fibrinolytic or a PCI.<sup>50</sup>

#### **Fibrinolytics Versus PCI**

The choice between fibrinolysis and PCI depends on the patient, the place, and the timing. Research on the relative effectiveness of fibrinolysis vs PCI has shown that the two modalities have comparable outcomes when PCI is not available within 1 to 2 hours and when contraindications to fibrinolysis are taken into consideration. Multiple clinical trials have shown that PCI, when available, has a higher rate of reperfusion and better short- and long-term outcomes than fibrinolysis.<sup>50-53</sup> A more recent study has shown that despite the ACC/AHA-endorsed time-to goal of 90 minutes, PCI may maintain superior outcomes for up to 150 minutes<sup>49</sup> For each patient, the decision should also take into account the duration of symptoms, the availability of the catheterization laboratory, the patient's mortality risk, any concerns that the STEMI might be of non-ACS origin, and the contraindications to fibrinolysis. (See Table 6, page 11.)

#### **PCI And Fibrinolysis In Combination**

One might think that following up the use of fibrinolytics with PCI would be a thoughtful choice for all STEMI patients. However, multiple randomized prospective trials have been unable to show a benefit of this approach.<sup>54-56</sup> Nevertheless, in *select* patients it is reasonable to consider PCI after fibrinolysis, in the form of facilitated PCI, rescue PCI, or follow-up PCI. The distinction between these therapies is subtle, but important.

#### **Facilitated PCI**

Generally speaking, PCI is the preferred method of reperfusion (especially for those who are in cardiogenic shock or are hemodynamically compromised) if it can be performed within 90 minutes of contact with the medical system. However, this "time-to" goal is not always achievable, particularly in facilities without PCI capability. As a result of this dilemma, researchers have sought to determine if administering fibrinolytics to initiate fibrinolysis during transport can *facilitate* reperfusion via PCI prior to arrival in the catheterization laboratory. However, a well-designed prospective multicenter study showed that when full-dose fibrinolytics were given to all STEMI patients before PCI, the combination resulted in worse outcomes including increases in mortality, incidence of shock, reinfarction, need for urgent revascularization, and congestive heart failure.<sup>57</sup> The search is still on to see if facilitated PCI with less than full-dose fibrinolytics and some combination of antithrombotics will tip the balance toward favorable outcomes.

Given the limited evidence, the ACC/AHA 2007 updated guidelines do not recommend the use of full-dose fibrinolytics for facilitated PCI.<sup>8</sup> On the basis of data from the 2006 ASSENT trial (a randomized, controlled, prospective study involving 1667 patients),<sup>58</sup> the guidelines do advise that facilitated PCI with less than full-dose fibrinolytics can be considered in patients with a high mortality risk when PCI is unavailable within 90 minutes and in those who have a low bleeding risk (young age, controlled hypertension, and normal body weight).8 A 2009 randomized controlled trial involving 1553 patients suggests that a patient whose door-to-balloon time is greater than 90 minutes but less than or equal to 150 minutes can be safely pretreated with glycoprotein IIb/IIIa complex (GPIIB/IIIa) platelet inhibitor and/or IV fibrinolytic therapy to achieve outcomes similar to those with primary PCI.<sup>59</sup>

#### **Rescue PCI**

Because reperfusion is not always achieved in patients who receive fibrinolysis, it is important to

follow their response clinically and be prepared with an alternative plan in case of reperfusion failure.<sup>60</sup> Rescue, or salvage, PCI should be considered as a second attempt to achieve reperfusion in patients with (1) less than 50% resolution of ST-segment elevation in the most prominently elevated lead within 90 minutes, (2) persistent hemodynamically unstable arrhythmias, (3) persistent ischemic symptoms, or 4) developing or worsening cardiogenic shock after fibrinolytics. This can be done up to 24 hours after fibrinolysis, but it is not recommended for patients older than 75 years.<sup>8</sup>

#### **Follow-up PCI**

Follow-up PCI is done after primary fibrinolysis, when angiography identifies persistently narrowed coronary arteries that would benefit from angioplasty. The decision to perform follow-up PCI is rarely made within the ED. However, it is worth distinguishing this from primary PCI (door-to-balloon time < 90 minutes), facilitated PCI (a half dose of fibrinolysis with a GPIIB/IIIa agent), and rescue PCI (initiation of PCI after failed reperfusion from primary fibrinolysis).<sup>61</sup>

#### **Adjuncts To Therapy**

Important adjuncts to the treatment of STEMI include agents that prevent regeneration of coronary thrombi after patency has been established. The

| Table 5. Characteristics Of Common Fibrinolytics For ST-Segment Elevation Myocardia | al |
|-------------------------------------------------------------------------------------|----|
| Infarction <sup>45-48</sup>                                                         |    |

| Property                                  | Alteplase (tPA)<br>(Activase®)                                                                                                                          | Reteplase<br>(Retavase®)                                                            | Tenecteplase<br>(TNKase™)                                                                                                       |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| IV Dosage                                 | 15-mg bolus, then<br>0.75 mg/kg over next 30 min<br>(max of 50 mg), followed by<br>0.5 mg/kg over 60 min (max<br>of 35 mg), for total dose of<br>100 mg | 10-U bolus over 2 min, then another<br>10-U bolus also over 2 min (30<br>min later) | Weight-adjusted single bolus over 5 s<br>< 60 kg: 30 mg<br>60-69 kg:35 mg<br>70-79 kg:40 mg<br>80-89 kg:45 mg<br>≥ 90 kg: 50 mg |
| Circulating<br>Half-life                  | 6 min                                                                                                                                                   | 13-16 min                                                                           | Initial half-life = 20-24 min<br>Terminal half-life = 90-130 min                                                                |
| Route of<br>Clearance                     | Liver                                                                                                                                                   | Liver and kidney                                                                    | Liver                                                                                                                           |
| Antibody Formation                        | No                                                                                                                                                      | No                                                                                  | Yes, but rare (< 1%)                                                                                                            |
| Risk of<br>Intracerebral Hem-<br>orrhage  | 0.6%                                                                                                                                                    | 0.8%                                                                                | 0.5%-0.7%                                                                                                                       |
| Reperfusion Rate by 90 min                | 79%                                                                                                                                                     | 80%                                                                                 | 80%                                                                                                                             |
| Lives saved<br>per 100 persons<br>treated | 3.5                                                                                                                                                     | 3.0                                                                                 | 3.5                                                                                                                             |

Abbreviations: IV, intravenous; tPA, tissue plasminogen activator.

2-pronged approach involves preventing thrombin generation and inhibiting platelet function.

#### Anticoagulants

The ACC/AHA guidelines recommend giving an anticoagulant to all STEMI patients for a minimum of 48 hours.<sup>62</sup> Unfractionated heparin (UFH), the traditional anticoagulant for acute MI, is given as a bolus of 60 U/kg (maximum of 4000 U) with a follow-up infusion of 12 U/kg per hour (maximum of 1000 U/hr) titrated to a targeted partial thromboplastin time (PTT) of 50 to 70 seconds. Enoxaparin (low-molecular-weight heparin [LMWH]) and fondaparinux are acceptable alternatives, with specific dosing regimens based on age and renal function. LMWH has the advantages of achieving a more consistent anticoagulation effect (so monitoring is usually unnecessary), a lower rate of heparininduced thrombocytopenia (HIT) vs UFH, and convenience of administration. But LMWH is not without risks. Data from ExTRACT-TIMI 25, an international double-blind comparison of enoxaparin vs UFH in 20,506 patients enrolled in 48 countries, indicated that enoxaparin carries a slightly increased risk of bleeding.<sup>8</sup> It is also more difficult to reverse than heparin because it is not an infusion and has a longer half-life.

OASIS-6, an international randomized doubleblind study comparing fondaparinux with control therapy (either placebo or UFH) in 12,092 patients enrolled in 41 countries, found that the bleeding risk with fondaparinux was lower than that for all of the other anticoagulants.<sup>65</sup> It is often the first-line anticoagulant in patients with HIT from prior heparin exposure, and administration is simplified with a fixed dose for all patients. The anticoagulant response is more predictable with fondaparinux than with heparin, allowing for less anticoagulation-level monitoring. However, this monitoring is done via anti-Xa levels, which are not performed in many hospital laboratories.<sup>66</sup> In addition, fondaparinux is not approved by the US Food and Drug Administration for this indication, and there is some literature showing an increased incidence of catheter tip thrombus when it is used in patients undergoing PCI.<sup>67</sup> For the dosages, advantages, and disadvantages of each of these agents, **see Table 7**.

#### Bivalirudin

Bivalirudin (Hirulog®, Angiomax®, Refludan®, hirudin-derived synthetic peptide) is a direct thrombin inhibitor that is available as an alternative to heparin therapy. It reversibly binds to the catalytic and substrate recognition sites on thrombin, which blocks circulating and fibrin-bound thrombin. Much like heparin, its full anticoagulation effect starts within minutes of administration, and once an infusion is stopped, it quickly diminishes with a half-life of 25 minutes.<sup>68</sup> Many studies done during the past 15 years have demonstrated greater reductions in ischemic outcomes with bivalirudin than with heparin, with a reduced risk of bleeding and other complications.<sup>69-71</sup>

The most recent ACC/AHA guidelines were published before the release of these data and offer bivalirudin as an option for use after initial heparin administration, but with class C level of evidence (consensus opinion or case study reports).<sup>8</sup> Results of the HORIZONS trial, a randomized multicenter comparative study of bivalirudin vs heparin with a GPIIB/IIIa agent, published in 2008, supported bivalirudin's lower rate of hemorrhagic complications, but noted an increased rate of in-stent thrombosis.<sup>72</sup> All of the patients were seen by an initial care team who diagnosed the patient's STEMI, started heparin, and requested urgent catheterization. Before catheterization was started, half of the patients had their heparin drip stopped and replaced with a bivalirudin drip/infusion. This study looked at bivalirudin use in the catheterization laboratory in a population who had received heparin prior to arrival. It was not designed to evaluate bivalirudin as an initial

| Fibrinolysis Favored                                                                                                                                                                                                                                                                                                    | PCI Favored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Catheterization laboratory not available</li> <li>Inability to obtain central vascular access</li> <li>Catheterization laboratory available, but without surgical backup</li> <li>Inability to meet door-to-balloon time &lt; 90 minutes</li> <li>Door-to-balloon – Door-to-needle time &gt; 1 hour</li> </ul> | <ul> <li>Presentation &gt; 3 hours after symptom onset</li> <li>Catheterization laboratory available in-house</li> <li>Patient with high mortality risk</li> <li>Evidence of cardiogenic shock or significant hemodynamic compromise</li> <li>Existence of significant relative contraindications to fibrinolysis</li> <li>Uncertain STEMI diagnosis (inability to rule out other causes of ST-seg<br/>ment elevation or a left bundle-branch block with no prior electrocardio-<br/>gram for comparison)</li> </ul> |  |  |

#### Table 6. Choosing A Reperfusion Option For ST-Segment Elevation Myocardial Infarction

Abbreviations: PCI, percutaneous coronary intervention; STEMI, ST-segment elevation myocardial infarction.

(Adapted from data in Antman EM, Hand M, Armstrong PW, et al. 2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2008;117(2):302-304.)

| Drug                 | Dosage                                                                                                                                                  | Advantages                                                                                                                                                                                                                                                    | Disadvantages                                                                                                                                                                                                               | Bleeding Risk             |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Heparin (UFH)        | 60-U/kg bolus (max, 4000<br>U), followed by 12-U/kg<br>per hr infusion (max, 1000<br>U/hr)                                                              | Immediate anticoagulation<br>Affects multiple sites in the<br>coagulation cascade<br>Long history of clinical use<br>Its effect is easy to monitor<br>via PTT<br>Easy to stop anticoagulation<br>by discontinuing the infusion<br>(t <sub>1/2</sub> = 10 min) | Prevents free thrombin from activating,<br>but does not inhibit clot-bound thrombin<br>Nonspecific binding, so it has a variable<br>anticoagulation effect requiring contin-<br>ued monitoring (PTT 50-70 s)<br>Risk of HIT | Dependent on<br>PTT level |
| Enoxaparin<br>(LMWH) | Patients < 75 y with serum                                                                                                                              | More effective thrombin inhibi-<br>tor than with UFH<br>More consistent anticoagula-<br>tion effect, so it does not<br>need to be monitored<br>Lower risk of HIT than with<br>UFH<br>Long history of clinical use                                             | Prevents free thrombin from activating,<br>but does not inhibit clot-bound thrombin<br>Less reversible than UFH<br>Difficult to monitor<br>Renally cleared<br>Long half-life<br>Risk of HIT                                 | Highest                   |
| Fondaparinux         | Patients with serum Cr<br>< 3.0 mg/dL: 2.5-mg IV<br>bolus for initial dose, then<br>2.5-mg SC injection every<br>day, started 24 hr after               | SC administration<br>Once daily dosing<br>Most consistent anticoagula-<br>tion effect, so it does not<br>need to be monitored<br>Fixed dose for all patients<br>No risk of HIT<br>Does not cross the placenta<br>Lower bleeding risk than with<br>UFH or LMWH | Difficult to monitor (few laboratories can<br>run anti-Xa levels)<br>Long half-life<br>Not approved by the US Food and Drug<br>Administration<br>Concerns about increased catheter tip<br>thrombi in PCI patients           | Lower                     |
| Bivalirudin          | 0.75-mg/kg IV bolus,<br>followed by 1.75 mg/kg<br>per hr<br>Patients with CrCl < 30 mL/<br>min: 0.75-mg/kg IV bolus,<br>followed by 1.0 mg/kg<br>per hr | Reduced risk of bleeding<br>No risk of HIT<br>Immediate anticoagulation<br>Easy to stop anticoagulation<br>by discontinuing the infusion<br>(t 1/2 = 25 min)                                                                                                  | Limited experience with its use<br>No studies observing bivalirudin use<br>without another anticoagulant either<br>coadministered or used just beforehand<br>Increased risk of in-stent thrombosis                          | Lowest                    |

### Table 7. Anticoagulants For ST-Segment Elevation Myocardial Infarction<sup>8,66</sup>

Abbreviations: Cr, creatinine; CrCl, creatinine clearance; HIT, heparin-induced thrombocytopenia; IV, intravenous; LMWH, low-molecular-weight heparin; PCl, percutaneous coronary intervention; PTT, partial thromboplastin time; SC, subcutaneous; t<sub>1,2</sub>, half-life; UFH, unfractionated heparin.

anticoagulant, and prior heparin use in the experimental arm may be a confounding factor. As a result, this study's findings should not change emergency medicine practice. However, it is reasonable to discuss a transition to bivalirudin with the receiving cardiology team.

#### **Antiplatelet Therapy**

In addition to aspirin, which has been standard therapy for STEMI for 2 decades,<sup>30,31,73</sup> other antiplatelet agents have been used to further inhibit the formation of coronary thrombi.

#### GPIIB/IIIa Inhibitors: Abciximab (ReoPro®), Eptifibatide (Integrilin®), Tirofiban (Aggrastat®)

GPIIB/IIIa inhibitors are monoclonal antibodies or small polypeptides that bind to or compete with the platelet's GPIIB/IIIa receptor. This action inhibits cross-links with fibrinogen and further platelet aggregation. For STEMI patients who will be undergoing PCI, it is common practice to give a GPIIB/IIIa inhibitor (abciximab, eptifibatide, tirofiban) before or upon arrival in the catheterization laboratory to reduce the potential for clot formation.<sup>8</sup> However, the actual effect of GPIIB/IIIa inhibitors is not yet clear. Three major studies that examined their use in acute MI have shown improved coronary blood flow in the short term.<sup>76-78</sup> However, these and additional studies<sup>79,80</sup> have not shown long-term benefits and have demonstrated an increased risk of bleeding in patients older than 75 years. The risk vs benefit of using these agents in any particular patient should be discussed with the accepting cardiology team.

#### Thienopyridines: Clopidogrel (Plavix®)

Thienopyridines bind to the platelet adenosine diphosphate (ADP) P2Y<sub>12</sub> receptor to irreversibly inhibit activation and aggregation for the life of the platelet. An oral clopidogrel loading dose of 300 mg produces significant inhibition of ADP-induced platelet aggregation within 2 hours, with the maximal effect achieved in 6 to 15 hours, and is recommended in the ACC/AHA guidelines.<sup>81</sup> However, this practice does not provide a sufficient precatheterization antiplatelet effect for patients receiving primary PCI. Although it is not yet supported by clinical studies of STEMI, the pharmacodynamic profile of clopidogrel suggests that the antiplatelet effect begins earlier with larger loading doses (600 mg) than with the 300-mg dose and that this is a reasonable consideration for patients receiving primary PCI.<sup>81-83</sup> In situations where patients have a true aspirin allergy, clopidogrel can be used as a substitute. (See the Special Circumstances section for more details.)

However, many physicians hesitate to administer clopidogrel to STEMI patients who are undergoing primary PCI because clopidogrel can cause increased bleeding if coronary artery bypass grafting

is needed. Two randomized studies, the COMMIT/ CCS-2 and the CLARITY-TIMI 28 trial (involving 45,852 and 3491 patients, respectively), examined the effects of clopidogrel use in STEMI patients and demonstrated that the drug has added value in those who are younger than 75 years and receive fibrinolysis with subsequent PCI or are unable to receive any form of reperfusion therapy.<sup>84,85</sup> As a result, the current ACC/AHA STEMI guidelines support the use of clopidogrel as a reasonable therapy in STEMI patients in these 2 subpopulations, but they do not comment on those undergoing primary PCI.<sup>8</sup> The 2007 ACC/AHA PCI guidelines more broadly support the use of clopidogrel before or during PCI in all STEMI patients despite the lack of studies showing a benefit in patients undergoing primary PCI.<sup>86</sup> With respect to bleeding risks, the need for an "emergent" CABG is a very rare phenomenon, and the increased bleeding risk can be averted by stopping clopidogrel 5 to 7 days before the surgical procedure.<sup>87</sup> As a result, it is not unreasonable to give a loading dose of 600 mg of clopidogrel before a STEMI patient is transported to a catheterization laboratory, as long as the evidence-based limitations of this therapy are understood.

#### **Glucose Control**

Clinical trials conducted in the early 1960s showed a significant reduction in mortality with the use of glucose-insulin-potassium (GIK) infusion in STEMI patients. This therapy was introduced in the 1960s to maximize potassium flux within ischemic myocardium as a means of reducing the incidence of arrhythmia, resolving ECG changes, and improving hemodynamics.<sup>88-90</sup> A large 2005 randomized controlled trial involving 20,201 patients across 3 centers evaluated the impact of GIK therapy in MI but did not reproduce these results. The study indicated that GIK infusions had no effect on mortality, cardiogenic shock, or cardiac arrest when given to all STEMI patients as a standard.<sup>91</sup> For this reason, routinely giving GIK infusions to STEMI patients is not advised. However, for patients with diabetes, early and tight glucose control with either an insulin sliding scale or an insulin drip is recommended by the ACC/AHA.<sup>92</sup>

#### **Magnesium Repletion**

Despite early interest, the routine administration of magnesium to patients with a STEMI does not appear to be indicated. Early trials noted improved outcomes when magnesium was routinely repleted in STEMI patients.<sup>93</sup> However, a later randomized, double-blind, controlled trial involving more than 6000 patients was unable to reproduce this effect in the broader study population or in any of the subgroups.<sup>93</sup> Nevertheless, magnesium was not found to be harmful and can be considered in patients with documented magnesium deficits who are on diuretic medications or are experiencing arrhythmias.<sup>94</sup>

## Disposition

For STEMI patients undergoing PCI, a system should be in place to ensure catheterization laboratory activation as quickly as possible after diagnosis. When the laboratory is at another facility, activation should be coordinated as the patient is prepared for transfer. (See the Controversies And Cutting Edge: Strategies To Improve Door-to-Balloon Time section.) All STEMI patients who are not taken elsewhere for primary PCI should be admitted to a setting with a cardiac intensive care unit (ICU) as the destination of choice.

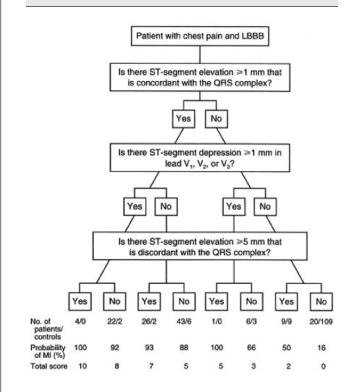
#### **Special Circumstances**

# Old Left Bundle-Branch Block: Sgarbossa Criteria

A new left bundle-branch block (LBBB) in the setting of chest pain is a diagnostic criterion for STEMI. (See Figure 2, page 5.) It is indicative of a proximal left anterior descending artery, with the potential to damage a large section of the myocardium. The resistance of the left bundle branch becomes slow or does not occur at all, so the signal traveling down the right bundle branch ends up depolarizing the left bundle after it depolarizes the right ventricle. This delay and change in the electrical axis creates the characteristic ECG pattern. When there is a preexisting LBBB in a patient with chest pain, it can mask the ECG changes of a STEMI and delay diagnosis and treatment.

Decades of work have gone into determining how to diagnose a STEMI through an LBBB. One diagnostic tool that has gained widespread use because of its high specificity is the Sgarbossa Criteria. Identified and later validated in 1996, the Sgarbossa Criteria<sup>95</sup> contain 3 questions that can be used to identify a STEMI through an old LBBB. (**See Figure 4**.) To help in assessing the likelihood that a given patient with chest pain and a baseline LBBB is having a STEMI, a scoring system was developed that takes into account the probability of a STEMI with each criterion.

- 1. ST-segment elevation  $\geq 1$  mm in a lead with an upward QRS complex (5 points)
- ST-segment depression ≥ 1 mm in V1, V2, or V3 (3 points)
- 3. ST-segment elevation ≥ 5 mm in a lead with a downward QRS complex (2 points)


Unlike the general STEMI criteria, the Sgarbossa Criteria do not need to be found in contiguous leads.

Criterion 1 is more indicative of a STEMI than is criterion 3, and the more criteria that are met, the more likely that a STEMI has occurred. According to the scoring system, a yes to question one is equal to 5 points, a yes to question two is equal to 3 points, and a yes to the third question is equal to 2 points. It is important to note that these criteria are not very sensitive, but they are highly specific. A score of 5 to 10 indicates an 88% to 100% probability of acute MI. With 0 points, there is still a 16% chance of a STEMI.

#### Aspirin Allergy Or Sensitivity

A 162- to 325-mg dose of aspirin taken early in the course of MI has been shown to produce a 23% reduction in mortality, measured at 1 month after the MI.<sup>30</sup> Patients with an aspirin allergy are at risk of losing this benefit. As a result, it is important to identify the allergic reactions of STEMI patients and determine whether the benefits of an aspirin outweigh the consequences of the reaction. For those in whom gastrointestinal tract bleeding is a concern, the cautious use of aspirin may be the better option. A 2005 randomized study involving 320 patients found the combination of a proton pump inhibitor and aspirin was a safer alternative than clopidogrel in patients who are at risk for gastrointestinal bleeding.96 However, the CAPRIE trial, a randomized study involving 19,185 patients, demonstrated that substituting clopidogrel for aspirin was a sufficient antiplatelet inhibitor when compared with aspirin.<sup>97,98</sup> Thus, in

# Figure 4. Flowchart For The Prediction of Acute Myocardial Infarction In The Presence Of Left Bundle-Branch Block<sup>95</sup>



Abbreviations: LBBB, left bundle-branch block; MI, myocardial infarction. (Reprinted with permission. Copyright © 1996 Massachusetts Medical Society. All rights reserved.) those patients with a definitive contraindication to aspirin (like angioedema or anaphylaxis), clopidogrel can be given as an alternative. In patients with other aspirin sensitivities, the reaction should be weighed against the cost of withholding therapy, and clopidogrel should be considered as a potent alternative. The current ACC/AHA guidelines do not comment on dosages, but keep in mind that in the acute care setting, higher loading doses of clopidogrel will be needed to approximate the platelet inhibition timeof-onset of aspirin for acute MI. As a result, a larger loading dose (600 mg or two 600-mg boluses 2 hours apart) may be most appropriate when clopidogrel is used as an aspirin substitute.<sup>34</sup>

#### **MI With Aortic Dissection**

The traditional teaching is that all acute MI patients should have a chest radiograph to screen for a wide mediastinum as an indication of possible AoD. Identifying AoD that presents at STEMI is important because fibrinolysis in these patients is associated with a mortality rate of 69% to 100%, often from cardiac tamponade or aortic rupture.<sup>99,100</sup> In general, 33% of patients whose AoDs are not diagnosed will die within the first 24 hours, 50% will die within 48 hours, and 75% within 2 weeks. Despite the high mortality, the case prevalence of AoD in the United States per year numbers in the thousands.

Ascending AoDs comprise about 50% of all dissections and are associated with a 7% to 13% incidence of retrograde dissection into a coronary ostium.<sup>101,102</sup> About 4% to 12% of this subpopulation of AoD patients will develop clinical and ECG findings compatible with acute MI.<sup>103</sup> However, STEMIs that are uncomplicated by AoD are orders of magnitude more common. In the career of any given EM clinician, far more patients with chest pain will be harmed by the delay in reperfusion than will be helped by early screening for AoD. As a result, routinely delaying reperfusion in STEMI patients in order to obtain a chest radiograph may not be appropriate general practice.

Decades of research have shown that a history of sudden onset of chest or back pain with or without syncope is the most sensitive tool in scaling the suspicion of AoD. Historical studies have shown that the sudden onset of chest pain alone has a sensitivity of  $85\%.^{104}\,\mathrm{A}$  study published in 2002 that used data from the International Registry of Acute Aortic Dissection and included 464 patients with confirmed AoD found that 95% reported pain in their chest, back, or abdomen; 90% reported it as severe or the worst pain they had ever experienced, and 64% described it as sharp. In addition, 72% of the patients had a history of hypertension.<sup>105</sup> Other data show that 75% of dissections occur in individuals 40 to 70 years of age, with the majority occurring in those 50 to 75 years old. There is a male to female predominance of 2:1 and

increased incidence with cocaine use. Forty percent of dissections in women younger than 40 years occur during pregnancy.<sup>106</sup> A pulse deficit, blood pressure differential (between right and left or upper and lower extremities), or focal neurologic defects may be concerning signs on physical examination. These characteristics are helpful when determining when to consider AoD as a complicating factor in STEMI patients.

In addition, chest radiography is unlikely to be the ideal method of screening. Although chest radiographs are easy to obtain, not all mediastinal widening observed on the radiograph is caused by dissection, and not all dissections will show a wide mediastinum on an x-ray. Other associated findings are often absent, and few are specific for dissection. More sensitive screening tests include a chest CT enhanced with IV contrast, magnetic resonance imaging, transesophageal echocardiography, transthoracic echocardiography, and angiography (the former gold standard), which has a sensitivity of 80% to 95%.<sup>105</sup> For experienced EM operators, a bedside EM cardiac ultrasound can be used as an extension of the physical examination. Transthoracic and transabdominal echos are not sensitive screening studies for AoD, but when an intraluminal flap is found, it can significantly raise the level of suspicion.

The investigation of dissection in the ED should be balanced with an awareness of the rarity of its occurrence, sensitivity to the historical and demographic factors that make it more likely, and consideration of how the delay to reperfusion can affect outcomes for STEMI patients.

## **Controversies And Cutting Edge**

# EMS Bypassing Smaller Hospitals For Those With PCI Capability

Primary PCI is preferred over fibrinolytic therapy in most STEMI patients, provided they make to it the catheterization laboratory of a PCI-capable facility within 90 minutes. Historically, individual EMS providers have chosen to bypass non-PCI facilities in favor of hospitals with PCI capability, but there have been concerns that this may lead to extended prehospital travel times that diminish the benefits of primary PCI over fibrinolysis. A 2006 study of US census data revealed that about 80% of American adults lived within 60 minutes of a PCI-capable hospital. Even more notable, for those whose closest hospital did not have PCI capability, 75% would have had less than an additional 30 minutes added to their transport time if taken to a PCI-capable hospital. There were notable geographic variations, but in most parts of the country, direct EMS transport can provide access to PCI.<sup>107</sup> Nevertheless, many centers are still struggling to meet door-to-balloon times for patients with far shorter EMS transports.

So until internal efficiency improves, allowing longer out-of-hospital times may lead to worse outcomes. In addition, a recent study compared facilitated PCI (with clopidogrel before catheterization laboratory intervention) occurring within 150 minutes to primary PCI and suggested similar outcomes.<sup>58</sup> This finding makes it more reasonable for EMS providers to stop at non-PCI centers for early evaluation and facilitating therapy before transporting a confirmed-STEMI patient to a PCI-capable center.

#### Facilitated PCI: Variable Definitions

The concept of facilitated PCI is difficult to understand because the term is used inconsistently in the literature. Most commonly, it refers to a number of antiplatelet agents and/or fibrinolytic combinations given before PCI. Most major studies have evaluated GPIIB/IIIa agents abciximab and eptifibatide independently and in combination with the fibrinolytics reteplase (Retavase®) and tenecteplase (TNKase<sup>TM</sup>), respectively. However, in one study the term facilitated PCI was used to describe the role of clopidogrel in situations better described as follow-up PCI, where PCI was done 2 to 8 days after primary fibrinolysis.<sup>61</sup> A more recent 2009 study used the term to refer to pretreatment with clopidogrel when door-to-balloon times for primary PCI were greater than the targeted 90 minutes but less than or equal to 150 minutes.<sup>59</sup> Awareness of the different definitions and the ability to characterize the definition used for any given study are important in appropriately interpreting the literature.

# Improving The Sensitivity Of Occlusive Thrombi Diagnoses

The STEMI ECG diagnostic criteria were derived from data with the aim of developing a fast and highly specific test. However, studies have shown that despite a specificity of 97%, the criteria endorsed by the ACC/AHA pick up only 40% of ACS patients with completely occlusive thrombi.<sup>14,108,109</sup>

# **Common Pitfalls And Medicolegal Issues For STEMI**

Missed MI is the leading reason for dollars awarded in closed malpractice settlements against EM practitioners. In addition, patients with a missed MI have a significant burden of morbidity and high mortality rates, which make this a major public health concern. The following pitfalls often lead to a missed STEMI.

• **Prolonged Time To Initial ECG** All patients presenting with chest pain should receive an ECG within 10 minutes of arrival. A STEMI cannot be diagnosed if a timely ECG is not performed.

#### • Missed Atypical Symptoms

Failure to suspect STEMI in patients with atypical symptoms and chest pain equivalents (eg, shortness of breath, dizziness, nausea with or without epigastric discomfort) can lead to delayed diagnosis. Particular caution should be taken with women, the elderly, patients with diabetes, African Americans, and Hispanics, as these groups are known to present with atypical symptoms more often than others.

- Improper ECG Interpretation Memorizing the STEMI criteria is a first-line diagnostic tool for all EM practitioners.
- Failure To Conduct Serial ECGs On Patients With Persistent Chest Pain Because ECGs are snapshots in time, a single

tracing does not preclude the possibility that a STEMI occurred prior to presentation and has since resolved, nor does it catch those patients whose symptoms will evolve into a STEMI pattern over time. Although serial ECGs are recommended, along with continuous monitoring, as a way to gain a longitudinal view of a patient's condition (particularly patients with ongoing chest pain), it is a less-than-perfect strategy.

#### • Delayed Care

Once a STEMI is diagnosed, rapid reperfusion is the primary treatment goal. The door-to goal can help set the pace while staff is mobilized to implement the initial therapies and start either fibrinolysis or transport to a catheterization laboratory for PCI. Outcomes are directly related to the amount of time that elapses between presentation and reperfusion.

#### Imbalanced Consideration Of AoD

Retrograde dissection of AoD into coronary artery ostia can cause a STEMI, but this is rare. The benefits of screening for AoD as the cause of MI should be balanced with the consequences of prolonged ischemic time from delayed reperfusion. Universally screening for AoD is not recommended, given that more patients will be hurt than helped by delayed reperfusion. The sudden onset of chest or back pain is 85% sensitive for identifying those at high risk of AoD as the cause of acute MI.

16

Even more concerning, the sensitivity of the 12-lead ECG is lower than 40% for complete vessel occlusion affecting the right ventricle or posterior myocardium or for a STEMI in the presence of an old LBBB.<sup>110</sup> Even with right-sided and posterior leads, the sensitivity of a 12-lead ECG is only moderately improved. As a result of misclassification or the time lapse until the ECG reflects the diagnostic pattern, lost myocardial tissue leads to worse outcomes.<sup>111</sup> Despite the limitations of the 12-lead ECG's sensitivity, its high specificity makes it an excellent tool for identifying patients who should receive immediate reperfusion therapy in the form of PCI or fibrinolysis.

Body surface mapping (BSM), or 80-lead ECG tracing, is a technique that uses multiple anterior and posterior chest leads to obtain a more complete picture of cardiac electrical activity. Multiple studies have demonstrated its effectiveness as a more sensitive and equally specific tool for distinguishing acute MI from ACS. A 2002 multicenter randomized clinical trial in 4 ED sites that evaluated patients with chest pain suggestive of ACS found the sensitivity of BSM for STEMI (90%-100%) to be far greater than the sensitivity of clinical suspicion for STEMI along with a 12-lead ECG (76%), an eventual troponin level elevation (57.1%), or an elevated CK-MB ratio (73%), while providing comparable specificity (95%-97%).<sup>112</sup> Efforts to develop this and other technologies in order to increase the detection rate and translation into clinical practice are continuing.

#### Strategies To Improve Door-To-Balloon Time

The importance of achieving prompt reperfusion for STEMI patients cannot be overemphasized. Achieving door-to-needle times is within the control of flow dynamics in an ED. However, achieving optimal door-to-balloon time requires coordination with

# Table 8. Measures To Improve Door-To-Balloon Times116

| Strategy                                                                                                                                     | Time Saved<br>(min) |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Emergency medicine clinician activates the cath-<br>eterization laboratory.                                                                  | 8.2                 |
| Single call to a central page operator activates the laboratory.                                                                             | 13.8                |
| Emergency department staff activates the cath-<br>eterization laboratory while the patient is en route<br>to the hospital.                   | 15.4                |
| Staff members are expected to be in the catheter-<br>ization laboratory within 20 minutes after being<br>paged (vs 30 minutes).              | 19.3                |
| An attending cardiologist is on-site at all times.                                                                                           | 14.6                |
| The hospital gives real-time feedback on the door-<br>to-balloon times to the emergency department and<br>catheterization laboratory staffs. | 8.6                 |

individuals and services outside the department, any one of which can delay a patient from receiving prompt reperfusion.<sup>113</sup> The Centers for Medicare and Medicaid Services is aware of how minutes matter with STEMI. The agency tracks hospitals' achievement of door-to goals and considers a hospital's performance when evaluating it for reaccreditation. Several studies have examined communication and coordination links in the STEMI reperfusion chain to see which have made the biggest differences in reducing the time to reperfusion.<sup>114,115</sup> A study published in 2006 noted the most effective, but least used, strategies and observed that hospitals that used the greatest number of interventions had the shortest door-to-balloon times.<sup>116</sup> (See Table 8.)

#### Summary

STEMI is a "can't miss" diagnosis in EM. A methodological approach to patients with chest pain who are at high risk of infarction is the best tool in identifying this diagnosis.

## **Case Conclusion**

In response to the nurse who asked what you'd like to do for your patient with chest pain and 1.0- to 1.5-mm ST-segment elevations in leads II, III, and aVF, you reply, "This patient is having a STEMI, so we need to focus on immediate reperfusion." EMS already gave a full aspirin, and the 3 doses of nitroglycerin the patient received en route had minimal effect on his pain. The physical examination is negative for crackles or rales, jugular venous pulsation elevation, or a heart murmur. The patient's pulses are bilaterally symmetric in his upper and lower extremities, and he has no evidence of extremity edema or neurologic deficit. The patient is scared but awake, alert, and oriented to person, place, and time. Your hospital does not have a catheterization laboratory on-site, and the nearest PCI-capable facility is 60 minutes away. Your nurse runs through a "fibrinolytic checklist." The patient has no absolute or relative contra-indications. You write an order for a heparin bolus, followed by a continuous infusion as well as tPA, and communicate this to the nurse, who has called a colleague into the room to help start the medications.

You then call the PCI-capable facility and speak with the EM clinician there about the patient. She explains that she can activate the catheterization laboratory while the patient is en route, but she calculates that "given the 60-minute lead time, the patient will not likely make a door-to-balloon time within 90 minutes." You note that the patient has no contraindications for lysis and that the heparin and tPA have just arrived in the room. You discuss the situation with the patient and his wife, who is now at his bedside. They express understanding of the risks and the benefits of rapid reperfusion via fibrinolysis vs tPA and consent to fibrinolysis, which is immediately pushed. You watch as the ST-segment elevation on the monitor resolves. The patient's pain resolves in synch. The nurse prints out a 12-lead ECG to confirm. You call the PCI-capable facility to coordinate transfer for continued care in their cardiac ICU and possible follow-up PCI.

## Note

Full color versions of the figures in this article are available at no charge to subscribers at www.ebmedicine.net/topics.

## References

Evidence-based medicine requires a critical appraisal of the literature based upon study methodology and number of subjects. Not all references are equally robust. The findings of a large, prospective, randomized, and blinded trial should carry more weight than a case report.

To help the reader judge the strength of each reference, pertinent information about the study, such as the type of study and the number of patients in the study, will be included in bold type following the reference, where available.

- 1. Roger VL. Epidemiology of myocardial infarction. *Med Clin North Am.* 2007;91(4):537-552. (**Review article**)
- 2. Abdallah MH, Arnaout S, Karrowni W, Dakik HA. The management of acute myocardial infarction in developing countries. *Int J Cardiol.* 2006;111(2):189-194.
- Pope JH, Selker HP. Diagnosis of acute cardiac ischemia. Emerg Med Clin North Am. 2003;21(1):27-59. (Review article)
- 4. Field JM, Hazinski MF, Gilmore D, eds. *Handbook of Emergency Cardiovascular Care for Healthcare Providers*. Dallas, TX: American Heart Association; 2005. (ACLS reference)
- Rivers C. Preparing for the Written Board Exam in Emergency Medicine. 5th ed. Milford, OH: Emergency Medicine Educational Enterprises, Inc; 2006:63. (Textbook)
- Brady W, Harrigan RA, Chan T. Section III: acute coronary syndromes. In: Marx A, ed-in-chief. Hickberger RS, Walls RM, senior eds. *Rosen's Emergency Medicine: Concepts and Clinical Practice.* Part 3. 6th ed. St Louis, MO: CV Mosby; 2006:1165-1169. (Textbook)
- Kosowsky JM. Thrombolysis for ST-elevation myocardial infarction in the emergency department. *Crit Pathw Cardiol.* 2006;5(3):141-146. (Review article)
- Antman EM, Hand M, Armstrong PW, et al. 2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation*. 2008;117(2):296-329. (Evidencebased practice guideline)
- Hollander JE. Acute coronary syndromes. In: Tintinalli JE, Kelen GD, Stapczynski JS, eds. *Emergency Medicine:* A Comprehensive Study Guide. 6th ed. New York, NY: McGraw-Hill; 2003:344-346. (Textbook)
- 10. Wagner G, Lim T, Gettes L, et al. Consideration of pitfalls in and omissions from the current ECG standards for diagnosis of myocardial ischemia/infarction in patients who have acute coronary syndromes. *Cardiol Clin.*

2006;24(3):331-342, vii. (Review article)

- 11. Rich MW, Imburgia M. Inotropic response to dobutamine in elderly patients with decompensated congestive heart failure. *Am J Cardiol*. 1990;65(7):519-521. (Comparative study)
- Holland RP, Brooks H. TQ-ST segment mapping: critical review and analysis of current concepts. *Am J Cardiol.* 1977;40(1):110-129. (Review article)
- Brady WJ, Perron AD, Ullman EA, et al. Electrocardiographic ST segment elevation: a comparison of AMI and non-AMI ECG syndromes. *Am J Emerg Med.* 2002;20(7):609-612. (Retrospective case control study; 599 patients)
- Hollander JE. ECG criteria for acute myocardial infarction. In: Tintinalli JE, Kelen GD, Stapczynski JS, eds. *Emergency Medicine: A Comprehensive Study Guide*. 6th ed. New York, NY: McGraw-Hill; 2006:343.
- 16. Hayashi T, Hirano Y, Takai H, et al. Usefulness of ST-segment elevation in the inferior leads in predicting ventricular septal rupture in patients with anterior wall acute myocardial infarction. *Am J Cardiol.* 2005;96(8):1037-1041.
- American College of Emergency Physicians. Clinical policy: critical issues in the evaluation and management of adult patients presenting with suspected of acute myocardial infarction or unstable angina. *Ann Emerg Med.* 2000;35(5):521-544.
- Brush JE Jr, Brand DA, Acampora D, Chalmer B, Wackers FJ. Use of the initial electrocardiogram to predict inhospital complications of acute myocardial infarction. N Engl J Med. 1985;312(18):1137-1141.
- Myocardial infarction redefined a consensus document of the Joint European Society of Cardiology / American College of Cardiology Committee for the Redefinition of Myocardial Infarction. *Eur Heart J.* 2000;21(18):1502-1513. (Consensus statement)
- Selker HP, Zalenski RJ, Antman EM, et al. An evaluation of technologies for identifying acute cardiac ischemia in the emergency department: a report from a National Heart Attack Alert Program Working Group. *Ann Emerg Med.* 1997;29(1):13-87. (Review article)
- 21. Evaluation of Technologies for Identifying Acute Cardiac Ischemia in Emergency Departments. Rockville, MD: Agency for Healthcare Research and Quality; 2000. Evidence Report/Technology Assessment 26. http://www.ncbi. nlm.nih.gov/books/bv.fcgi?rid=hstat1.chapter.37233. Accessed April 30, 2009. (Technical review report)
- Martin TN, Groenning BA, Murray HM, et al. ST-segment deviation analysis of the admission 12-lead electrocardiogram as an aid to early diagnosis of acute myocardial infarction with a cardiac magnetic resonance imaging gold standard. *Am J Coll Cardiol.* 2007;50(11):1021-1028. (Prospective, observational study; 116 patients)
- GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function and survival after acute myocardial infarction. *N Engl J Med.* 1993;329(22):1615-1622. (Randomized controlled trial; 2431 patients)
- 24. Meine TJ, Roe MT, Chen AY, et al. Association of intravenous morphine use and outcomes in acute coronary syndromes: results from the CRUSADE Quality Improvement Initiative. *Am Heart J.* 2005;149(6):1043-1049. (Nonrandomized, retrospective, observational study; 57,039 patients)
- 25. Jayes RL, Beshansky JR, D'Agostino RB, Selker HP. Do patients' coronary risk factor reports predict acute cardiac ischemia in the emergency department? A multicenter

study. *J Clin Epidemiol.* 1992;45(6):621-626. (Multicenter, prospective, observational study; 544 patients)

- Slater DK, Hlatky MA, Mark DB, Harrell FE Jr, Pryor DB, Califf RM. Outcomes in suspected acute myocardial infarction with normal or minimally abnormal admission electrocardiographic findings. *Am J Cardiol.* 1987;60(10):766-770. (Prospective observational study; 775 patients)
- 27. Brady WJ, Homer A. Clinical decision-making in adult chest pain patients with electrocardiographic ST-segment elevation: STEMI vs. Non-AMI causes of ST-segment abnormality. *Emerg Med Prac.* 2006;8(1):4. (Editorial)
- Wang K, Asinger RW, Marriott HJ. ST-segment elevation in conditions other than acute myocardial infarction. N Engl J Med. 2003;349(22):2128-2135. (Review article)
- Body R, Hogg K. Best evidence topic reports. Oxygen in acute uncomplicated myocardial infarction. *Emerg Med J.* 2004;21(1):75. (Review article, 290 papers)
- Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. *Lancet*. 1988;2(8607):349-360. (Randomized, controlled, prospective trial; 17,187 patients)
- 31. Barbash IM, Freimark D, Gottlieb S, et al. Israeli Working Group on Intensive Cardiac Care, Israel Heart Society. Outcome of myocardial infarction in patients treated with aspirin is enhanced by pre-hospital administration. *Cardiology.* 2002;98(3):141-147. (Retrospective comparative study; 922 patients)
- 32. Berger JS, Stebbins A, Granger CB, et al. Initial aspirin dose and outcome among ST-elevation myocardial infarction patients treated with fibrinolytic therapy. *Circulation*. 2008;117(2):192-199. (**Retrospective, comparative study; 48,422 patients**)
- Maalouf R, Mosley M, James KK, Kramer KM, Kumar G. A comparison of salicylic acid levels in normal subjects after rectal versus oral dosing. *Acad Emerg Med.* 2009;16(2):157-161. (Case crossover study; 24 patients)
- 34. Harrington RA, Becker RC, Ezekowitz M, et al. Antithrombotic therapy for coronary artery disease: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. *Chest*. 2004;126(3 suppl):513S-548S.
- 35. Rude RE, Muller JE, Braunwald E. Efforts to limit the size of myocardial infarcts. *Ann Intern Med.* 1981;95(6):736-761.
- Yusuf S, Collins R, MacMahon S, Peto R. Effect of intravenous nitrates on mortality in acute myocardial infarction: an overview of the randomised trials. *Lancet*. 1998;1(8594):1088-1092.
- 37. Meine TJ, Roe MT, Chen AY, et al. Association of intravenous morphine use and outcomes in acute coronary syndromes: results from the CRUSADE Quality Improvement Initiative. *Am Heart J.* 2005;149(6):1043-1049. (Nonrandomized, retrospective, observational study; 57,039 patients)
- Roberts R, Rogers WF, Mueller HS, et al. Immediate versus deferred beta-blockade following thrombolytic therapy in patients with acute myocardial infarction. Results of the Thrombolysis in Myocardial Infarction (TIMI) II-B Study. *Circulation*. 1991;83(2):422-437.
- 39. Van de Werf F, Janssens L, Brzostek T, et al. Short-term effects of early intravenous treatment with a beta-adrenergic blocking agent or a specific bradycardiac agent in patients with acute myocardial infarction receiving thrombolytic therapy. J Am Coll Cardiol. 1993;22(2):407-416.
- Chen ZM, Pan HC, Chen YP, et al. Early intravenous then oral metoprolol in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. *Lancet*. 2005;366(9497):1622-1632.

- 41. Pfisterer M, Cox JL, Granger CB, et al. Atenolol use and clinical outcomes after thrombolysis for acute myocardial infarction: the GUSTO-I experience. Global Utilization of Streptokinase and TPA (alteplase) for Occluded Coronary Arteries. *J Am Coll Cardiol.* 1998;32(3):634-640. (Retrospective, comparative, controlled study; 40,844 patients)
- 42. Acute coronary syndromes. In: 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. *Circulation*. 2005;112(22 suppl):III55-III72. (Consensus statement)
- 43. Keeley EC, Boura JA, Grines CL. Comparison of primary and facilitated percutaneous coronary interventions for ST-elevation myocardial infarction: quantitative review of randomized trials. *Lancet*. 2006;367(9510):579-588.
- 44. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. *Lancet*. 2008;371(9624):1612-1623.
- ACC/AHA guidelines for the management of patients with acute myocardial infarction. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 1996;28(5):1328-1428. (Evidence-based practice guideline)
- RxList: Internet Drug Index. http://www.rxlist.com/ script/main/hp.asp. Accessed September 1, 2008. (Drug reference)
- 47. PharmacyHealthcare Solutions. Thrombolytics: Therapeutic Class Review. Eden Prairie, MN: AmerisourceBergen; 2003:7. http://www.pharmhs.com/Forms/Thrombolytic%20Review.pdf. Accessed May 1, 2009. (Review report)
- The Merck Manuals Online Medical Library for Healthcare Professionals. IV fibrinolytic drugs available in the US. http://www.merck.com/media/mmpe/pdf/ Table\_073-7.pdf. Accessed September 1, 2008. (Drug pharmacology reference)
- Boersma E; Primary Coronary Angioplasty vs. Thrombolysis Group. Does time matter? A pooled analysis of randomized clinical trials comparing primary percutaneous coronary intervention and in-hospital fibrinolysis in acute myocardial infarction patients. *Eur Heart J.* 2006;27(7):779-788. (Meta-analysis; 22 trials, 6763 patients)
- 50. Andersen HR, Nielsen TT, Vesterlund T, et al. Danish multicenter randomized study on fibrinolytic therapy versus acute coronary angioplasty in acute myocardial infarction: rationale and design of the Danish trial in Acute Myocardial Infarction-2 (DANAMI-2). *Am Heart J.* 2003;146(2):234-241. (**Multicenter, randomized trial; 782 patients**)
- 51. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. *Lancet*. 2003;361(9351):13-20. (**Review, 23 randomized trials**)
- 52. Andersen HR, Nielsen TT, Rasmussen K, et al. A comparison of coronary angioplasty with fibrinolytic therapy in acute myocardial infarction. *N Engl J Med.* 2003;349(8):733-742.
- 53. Busk M, Maeng M, Rasmussen K. The Danish multicentre randomized study of fibrinolytic therapy vs. primary angioplasty in acute myocardial infarction (the DANAMI-2 trial): outcome after 3 years follow-up. *Eur Heart J.* 2008;29(10):1259-1266. (Multicenter randomized trial; 1129 patients)
- 54. Immediate vs delayed catheterization and angioplasty following fibrinolytic therapy for acute myocardial infarction: TIMI II A results. *JAMA*. 1988;260(19):2849-2858. (Prospective comparative study; 389 patients)

- Topol EJ, Califf RM, George BS, et al. A randomized trial of immediate versus delayed elective angioplasty after intravenous tissue plasminogen activator in acute myocardial infarction. *N Engl J Med.* 1987;317(10):581-588. (Comparative study, 197 patients)
- Simoons ML, Arnold AE, Betriu A, et al. Thrombolysis with tissue plasminogen activator in acute myocardial infarction: no additional benefit from immediate percutaenous coronary angioplasty. *Lancet*. 1988;1(8579):197-203. (Prospective, randomized trial; 367 patients)
- 57. Ellis SG, Tendera M, de Belder MA, et al. Facilitated PCI in patients with ST-elevation myocardial infarction. N Engl J Med. 2008;358(21):2205-2217. (Multicenter, doubleblind, placebo-controlled study; 2452 patients)
- 58. Assessment of the Safety and Efficacy of a New Treatment Strategy with Percutaneous Coronary Intervention (AS-SENT-4 PCI) Investigators. Primary versus tenecteplasefacilitated percutaneous coronary intervention in patients with ST-segment elevation acute myocardial infarction (AS-SENT-4 PCI): randomized trial. *Lancet*. 2006;367(9510):569-578. (Prospective randomized trial; 1667 patients)
- McKay RG, Dada MR, Mather JF, et al. Comparison of outcomes and safety of "facilitated" versus primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. *Am J Cardiol.* 2009;103(3):316-321. (Prospective, consecutive sample of 1553 patients)
- Granger CB, White HD, Bates ER, Ohman EM, Califf RM. A pooled analysis of coronary arterial patency and left ventricular function after intravenous thrombolysis for acute myocardial infarction. *Am J Cardiol.* 1994;74(12):1220-1228. (Meta-analysis, 58 studies; 14,124 patients)
- 61. Sabatine MS, Cannon CP, Gibson CM, et al. Effect of clopidogrel pretreatment before percutaneous coronary intervention in patients with ST-elevation myocardial infarction treated with fibrinolytics. the PCI-CLARITY study. *JAMA*. 2005;294(10):1224-1232. (**Prospective, multicenter, randomized, double-blind, placebo-controlled trial; 1863 patients**)
- 62. Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of patients with acute myocardial infarction). *J Am Coll Cardiol.* 2004;44(3):E1–E211.
- 63. Antman EM, Morrow DA, McCabe CH, et al. Enoxaparin versus unfractionated heparin as antithrombin therapy in patients receiving fibrinolysis for ST-elevation myocardial infarction. Design and rationale for the Enoxaparin and Thrombolysis Reperfusion for Acute Myocardial Infarction Treatment-Thrombolysis In Myocardial Infarction study 25 (ExTRACT-TIMI 25). *Am Heart J.* 2005;149(2):217-226. (Double-blind comparison study; 20,506 patients, 48 countries)
- Gibson CM, Murphy SA, Montalescot G, et al. Percutaneous coronary intervention in patients receiving enoxaparin or unfractionated heparin after fibrinolytic therapy for ST-segment elevation myocardial infarction in the ExTRACT-TIMI 25 trial. *J Am Coll Cardiol.* 2007;49(23):2238-2246. (Double-blind comparison study; 20,479 patients, 48 countries)
- 65. Yusuf S, Mehta SR, Chrolavicius S, et al. Effects of fondaparinux on mortality and reinfarction in patients with acute ST-segment elevation myocardial infarction: the OASIS-6 randomized trial. JAMA. 2006;295(13):1519-

1530. (Randomized controlled trial; 12,092 patients, 41 countries)

- 66. *Tarascon Pocket Pharmacopoeia: 2008 Classic Shirt-Pocket Edition.* Lompoco, CA: Tarascon Publishing; 2008. (Drug dosing reference)
- 67. Schlitt A, Rupprecht HJ, Reindl I, et al. In-vitro comparison of fondaparinux, unfractionated heparin, and enoxaparin in preventing cardiac catheter-associated thrombus. *Coron Artery Dis.* 2008;19(4):279-284. (Crossover study; 8 subjects)
- Caron MF, McKendall G. Bivalirudin in percutaneous coronary intervention. *Am J Health Syst Pharm.* 2003;60(18):1841-1849. (Review article)
- 69. Nappi J. The biology of thrombin in acute coronary syndromes. *Pharmacotherapy*. 2002;22(6 pt 2):90S-96S. (Review article)
- 70. Bittl JA, Strony J, Brinker JA, et al. Treatment with bivalirudin (Hirulog) as compared with heparin during coronary angioplasty for unstable or postinfarction angina. *N Engl J Med.* 1995;333(12):764-769. (Double-blind randomized trial; 4,098 patients)
- Bittl JA; for Hirulog Angioplasty Study Investigators. Comparative safety profiles of hirulog and heparin in patients undergoing coronary angioplasty. *Am Heart J.* 1995;130(3 pt 2):658-665. (Double-blind randomized trial; 4312 patients)
- 72. Stone GW, Witzenbichler B, Guagliumi G, et al. Bivalirudin during primary PCI in acute myocardial infarction. *N Engl J Med* 2008; 358:2218-2230. (Randomized trial, 3602 patients)
- 73. Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. *BMJ*. 2002;324(7329):71-86. (Meta-analysis, 287 studies; 135,000 patients)
- 74. Montalescot G, Barragan P, Wittenberg O, et al. Platelet glycoprotein IIb/IIIa inhibition with coronary stenting for acute myocardial infarction. *N Engl J Med.* 2001;344(25):1895-1903. (Randomized, double-blind, controlled trial; 300 patients)
- 75. Stone GW, Grines CL, Cox DA, et al; for Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications (CADILLAC) Investigators. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med. 2002;346(13):957-966.
- 76. Antman EM, Giugliano RP, Gibson CM, et al. Abciximab facilitates the rate and extent of thrombolysis: results of the thrombolysis in myocardial infarction (TIMI) 14 trial. *Circulation*. 1999;99(21):2720-2732. (**Prospective, randomized, controlled trial; 888 patients**)
- 77. Strategies for Patency Enhancement in the Emergency Department (SPEED) Group. Trial of abciximab with and without low-dose reteplase for acute myocardial infarction. *Circulation*. 2000;101(24):2788-2794. (Prospective, randomized, controlled trial; 304 patients)
- 78. Brener SJ, Zeymer U, Adgey AA, et al. Eptifibatide and low-dose tissue plasminogen activator in acute myocardial infarction: the integrilin and low-dose thrombolysis in acute myocardial infarction (INTRO AMI) trial. *J Am Coll Cardiol.* 2002;39(3):377-386. (2-Phase, prospective, randomized, controlled trial; 304 patients)
- 79. Assessment of the Safety and Efficacy of a New Thrombolytic Regimen (ASSENT)-3 Investigators. Efficacy and safety of tenecteplase in combination with enoxaparin, abciximab, or unfractionated heparin: the ASSENT-3 randomised trial in acute myocardial infarction. *Lancet*.

2001:358(9282):605-613. (**Prospective randomized trial;** 6095 patients)

- 80. Topol EJ; GUSTO V Investigators. Reperfusion therapy for acute myocardial infarction with fibrinolytic therapy or combination reduced fibrinolytic therapy and platelet glycoprotein IIb/IIIa inhibition: the GUSTO V randomised trial. *Lancet*. 2001;357(9272):1905-1914. (**Prospective randomized trial; 16,588 patients**)
- 81. Cuisset T, Frere C, Quilici J, et al. Benefit of a 600-mg loading dose of clopidogrel on platelet reactivity and clinical outcomes in patients with non–ST-segment elevation acute coronary syndrome undergoing coronary stenting. *J Am Coll Cardiol.* 2006;48(7):1339-1345.
- 82. Patti G, Colonna G, Pasceri V, Pepe LL, Montinaro A, Di Sciascio G. Randomized trial of high loading dose of clopidogrel for reduction of periprocedural myocardial infarction in patients undergoing coronary intervention: results from the ARMYDA-2 (Antiplatelet therapy for Reduction of MYocardial Damage during Angioplasty) study. *Circulation*. 2005;111(16):2099-2106.
- Gladding P, Webster M, Zeng I. The antiplatelet effect of higher loading and maintenance dose regimens of clopidogrel. The PRINC (Plavix Response in Coronary Intervention) *Trial. J Am Coll Cardiol Intv.* 2008;1:612-619. (Doubleblind, randomized, placebo-controlled trial; 60 patients)
- Chen ZM, Jiang LX, Chen YP, et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomized placebo-controlled trial. *Lancet*. 2005;366(9497):1607-1621. (Multicentered, randomized, placebo-controlled trial; 45,852 patients)
- Sabatine MS, Cannon CP, Gibson CM, et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. *N Engl J Med*. 2005;352(12):1179-1189. (Prospective, randomized, controlled trial; 3491 patients)
- King SB, Smith SC, Hirschfeld JW, et al. 2007 Focused Update of the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention: a report of the American College of Cardiology and American Heart Association Taskforce on Practice Guidelines. Circulation. 2008;117(2):261-295. http://circ.ahajournals.org/cgi/ reprint/CIRCULATIONAHA.107.188208. Accessed: May 5, 2009. (Clinical practice guideline).
- 87. Pollack CV Jr, Hollander JE. Antiplatelet therapy in acute coronary syndromes: the emergency physician's perspective. *J Emerg Med.* 2008;35(1):5-13. (**Review article**)
- 88. Yusuf S, Mehta SR, Diaz R, et al. Challenges in the conduct of large simple trials of important generic question in resource-poor settings: the CREAT and ECLA trial program evaluating GIK (glucose, insulin and potassium) and low-molecular–weight heparin in acute myocardial infarction. *Am Heart J.* 2004:148(6):1068-1078. (**Randomized controlled trial; 21 countries; 20,000 patients**)
- 89. Rogers WJ, Segall PH, McDaniel HG, Mantle JA, Russell RO Jr, Rackley CE. Prospective randomized trial of glucose-insulin-potassium in acute myocardial infarction: effects on myocardial hemodynamics, substrates and rhythm. *Am J Cardiol*. 1979;43(4):801-809. (**Prospective randomized trial**)
- Rogers WJ, Stanley AW Jr, Breinig JB, et al. Reduction of hospital mortality rate of acute myocardial infarction with glucose-insulin-potassium infusion. *Am Heart J.* 1976;92(4):441-454.
- 91. Mehta SR, Yusuf S, Díaz R, et al. Effect of glucoseinsulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREATE-ECLA randomized controlled trial. *JAMA*.

2005;293(4):437-446. (2-by-2 factorial design; randomized, controlled, multicenter trial; 20,201 patients)

- 92. Antman EM, Anbe DT, Armstrong PW, et al. ACC/ AHA guidelines for the management of patients with ST elevation myocardial infarction: a report of the American College for Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). http://www.acc.org/ qualityandscience/clinical/guidelines/STEMI/Guideline1/index.pdf. Accessed May 1, 2009. (Evidence-based practice guideline)
- 93. ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. *Lancet.* 1995;345(8951):669-685. (**2-by-2 factorial design; randomized controlled trial; 58,050 patients**)
- 94. Magnesium in Coronaries (MAGIC) Trial Investigators. Early administration of intravenous magnesium to high-risk patients with acute myocardial infarction in the Magnesium in Coronaries (MAGIC) Trial: a randomised controlled trial. *Lancet*. 2002;360(9341):1189-1196. (Prospective, randomized, double-blind, controlled trial; 6213 patients)
- 95. Sgarbossa EB, Pinski SL, Barbagelata A, et al. Electrocardiographic diagnosis of evolving acute myocardial infarction in the presence of left bundle-branch block. *N Engl J Med.* 1996;334(8):481-487. (**Case control study; 131 patients**)
- 96. Chan FK, Ching JY, Hung LC, et al. Clopidogrel versus aspirin and esomeprazole to prevent recurrent ulcer bleeding. *N Engl J Med.* 2005;352(3):238-244. (Comparative study; 320 patients)
- Cannon CP; CAPRI Investigators. Effectiveness of clopidogrel versus aspirin in preventing acute myocardial infarction in patients with symptomatic atherothrombosis (CAPRIE trial). *Am J Cardiol.* 2002;90(7):760-762. (Randomized trial; 19,185 patients)
- 98. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). *Lancet*. 1996;348(9038):1329-1339. (Randomized blinded trial; 19,185 patients)
- Kahn JK. Inadvertent thrombolytic therapy for cardiovascular diseases masquerading as acute coronary thrombosis. Clin Cardiol. 1993;16(1):67-71. (Case reports; 3 patients)
- 100. Eriksen UH, Mølgaard H, Ingerslev J, Nielsen TT. Fatal haemostatic complications due to thrombolytic therapy in patients falsely diagnosed as acute myocardial infarction. *Eur Heart J.* 1992;13(6):840-843. (Case reports; 2 patients)
- 101. Neri E, Toscano T, Papalia U, et al. Proximal aortic dissection with coronary malperfusion: presentation, management, and outcome. J Thorac Cardiovasc Surg. 2001;121(3):552–560. (Observational study; 211 patients)
- 102. Khoury NE, Borzak S, Gokli A, Havstad SL, Smith ST, Jones M. "Inadvertent" thrombolytic administration in patients without myocardial infarction: clinical features and outcome. *Ann Emerg Med.* 1996;28(3):289-293. (Observational study; 609 patients)
- 103. Menon V, Chen T, Schwartz MJ. Thrombolytic drugs and acute aortic dissection. *Am Heart J.* 1995;130(6):1312-1313. (Letter to the editor)
- 104. Chen K, Varon J, Wenker OC, Judge DK, Fromm RE Jr, Sternback GL. Acute thoracic aortic dissection: the basics. *J Emerg Med.* 1997;15(6):859-867. (Review article)
- 105. Klompas M. Does this patient have an acute thoracic

aortic dissection? JAMA. 2002;287(17):2262-2272.

- 106. Cigarroa J, Isselbacher E, DeSanctis R. Diagnostic imaging in the evaluation of suspected aortic dissection. N Engl J Med. 1993;328(1):35-43. (Review article)
- 107. Nallamothu BK, Bates ER, Wang Y, Bradley EH, Krumholz HM. Driving times and distances to hospitals with percutaneous coronary intervention in the United States: implications for prehospital triage of patients with ST-elevation myocardial infarction. *Circulation.* 2006;113(9):1189-1195. (Cross-sectional population study)
- 108. Eriksson P, Gunnarsson G, Dellborg M. Diagnosis of acute myocardial infarction in patients with chronic left bundle-branch block: standard 12-lead ECG compared to dynamic vectorcardiography. *Scand Cardiovasc J.* 1999;33(1):17-22. (Observational study; 4690 patients)
- 109. Martin TN, Groenning BA, Murray HM, et al. ST-segment deviation analysis of the admission 12-lead electrocardiogram as an aid to early diagnosis of acute myocardial infarction with a cardiac magnetic resonance imaging gold standard. *J Am Coll Cardiol*. 2007;50(11):1021-1028. (**Observational study; 116 patients**)
- 110. Zhou SH, Startt-Selvester R, Liu X, et al. An automated algorithm to improve ECG detection of posterior STEMI associated with left circumflex coronary artery occlusion. *Comput Cardiol.* September 2006:33-36. (Observational study; 182 patients)
- 111. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. *Lancet*. 1994;343(8893):311-322. (Meta-analysis of 9 randomized controlled trials; 58,600 patients)
- 112. Ornato JP, Menown IB, Riddell JW, et al. 80-lead body map detects acute ST segment-elevation myocardial infarction missed by standard 12-lead electrocardiography. *J Am Coll Cardiol.* 2002;39(5):322A. (Multicenter, randomized clinical trial)
- 113. McNamara RL, Wang Y, Herrin J, et al. Effect of door-toballoon time on mortality in patients with ST-segment elevation myocardial infarction. *J Am Coll Cardiol.* 2006;47(11):2180-2186. (Cohort study; 29,222 patients)
- 114. Bradley EH, Roumanis SA, Radford MJ, et al. Achieving door-to-balloon times that meet quality guidelines: how do successful hospitals do it? J Am Coll Cardiol. 2005;46(7):1236-1241. (Qualitative study; 122 hospitals)
- 115. Bradley EH, Curry LA, Webster TR, et al. Achieving rapid door-to-balloon times: how top hospitals improve complex clinical systems. *Circulation*. 2006;113(8):1079-1085. (Qualitative study; 122 hospitals)
- 116. Bradley EH, Herrin J, Wang Y, et al. Strategies for reducing the door-to-balloon time in acute myocardial infarction. *N Engl J Med.* 2006;355(22):2308-2320. (Qualitative study; 365 hospitals)
- 117. Steel C. Severe angina pectoris relieved by oxygen inhalation. *BMJ*. 1900;2:1568 (**Observational study**)
- Russek HI, Regan FD, Naegel CF. One hundred percent oxygen in the treatment of acute myocardial infarction and severe angina pectoris. *JAMA*. 1950; 144:373-375. (Observational study)
- 119. Kenmure ACF, Murdoch WR, Beattie AD, et al. Circulatory and metabolic effects of oxygen in myocardial infarction. *Brit Med J.* 1968;4:360-364. (Quasi-experimental, physiologic study)
- 120. Thomas M, Malcrona R, Shillingford J. Haemodynamic effects of oxygen in patients with acute myocardial infarction. *Brit Heart J.* 1965;27:401-407. (Randomized, controlled, double-blinded study)

- 121. Neil WA. Effects of arterial hypoxemia and hyperoxia on oxygen availability for myocardial metabolism: patient with and without coronary heart disease. *Am J Cardiol.* 1969; 24:166-171. (Case control study)
- 122. Rawles JM, Kenmure ACF. Controlled trial of oxygen in uncomplicated myocardial infarction. *BMJ*. 1976;53:411-417. (Randomized, double-blinded, controlled trial; 151 patients)
- 123. McNulty PH, King N, Scott S, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. *Am J Physiol Heart Circ Physiol.* 2005;288:1057-1062. (Quasi-experimental physiological study; 27 patients)
- 124. Weijesinghe M, Perrin K, Ranchord A, et al. Routine use of oxygen in the treatment of myocardial infarction: systematic review. *BMJ.* 2009;95:198-202. (**Review article**)

## **CME Questions**

- 1. ACS:
  - a. Is a term for all MIs
  - b. Describes MI caused by clots that travel to the heart and block coronary arteries
  - c. Characterizes a specific pathophysiological cause for MI involving atherosclerotic plaque rupture with the formation of a superimposed clot within a coronary artery
  - d. Is a term that is no longer used when discussing STEMI

#### 2. A STEMI diagnosis can be made with:

- a. An ECG and cardiac enzymes
- b. A history and physical examination with cardiac enzymes
- c. Cardiac enzymes alone
- d. An ECG alone
- 3. STEMI diagnostic criteria require that a patient have chest pain or a chest pain equivalent and a qualifying ECG pattern. Which of the following is not a qualifying pattern?
  - a.  $\geq 1 \text{ mm (0.1 mV) in 2 or more adjacent limb leads (from aVL to III, including -aVR)}$
  - b. T-wave inversions
  - c.  $\geq 2 \text{ mm} (0.2 \text{ mV})$  in precordial leads V1 through V3
  - d. ≥1 mm (0.1 mV) in precordial leads V4 through V6
- 4. When treating patients with chest pain and an ECG showing a STEMI, which of the following sets of questions is least important to ask?
  - a. Questions about the nature of their chest pain
  - b. Questions about risk factors that increase the chance of an acute MI
  - c. Questions about when and how their chest pain started
  - d. Questions about potential contraindications to fibrinolytic therapy

- 5. Other causes of ECG ST-segment elevation in patients complaining of chest pain include all of the following EXCEPT:
  - a. Pericarditis/Myocarditis
  - b. Benign early repolarization
  - c. Left ventricular hypertrophy
  - d. Paced rhythm
  - e. All of the above can cause ST-segment elevations
- 6. In STEMI patients with documented or reported aspirin allergies:
  - a. The risks outweigh the benefits, so aspirin should be avoided
  - b. The mortality benefits outweigh the risks, so aspirin should always be given
  - c. Clopidogrel can be considered as an alternative
  - d. Acetaminophen can be given as an alternative

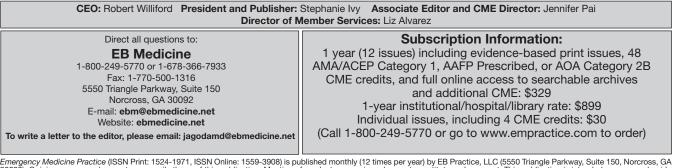
# 7. In patients with a preexisting LBBB and chest pain:

- a. It is impossible to diagnose a STEMI with confidence.
- b. If a STEMI is present, it will be masked; therefore, all patients should be taken to the catheterization laboratory for coronary evaluation.
- c. The Sgarbossa Criteria have high sensitivity in identifying a STEMI.
- d. The Sgarbossa Criteria have high specificity in identifying a STEMI.

# 8. The term facilitated PCI has been used to refer to:

- a. Antiplatelet agents given before PCI
- b. Fibrinolytics given in combination with antiplatelet agents
- c. Fibrinolytics given before PCI
- d. All of the above

#### Physician CME Information


- Date of Original Release: June 1, 2009. Date of most recent review: May 1, 2009. Termination date: June 1, 2012.
- Accreditation: This activity has been planned and implemented in accordance with the Essentials and Standards of the Accreditation Council for Continuing Medical Education (ACCME) through the sponsorship of EB Medicine. EB Medicine is accredited by the ACCME to provide continuing medical education for physicians.
- Credit Designation: EB Medicine designates this educational activity for a maximum of *48 AMA PRA Category 1 Credit*(s)<sup>™</sup> per year. Physicians should only claim credit commensurate with the extent of their participation in the activity.
- ACEP Accreditation: Emergency Medicine Practice is approved by the American College of Emergency Physicians for 48 hours of ACEP Category 1 credit per annual subscription.
- AAFP Accreditation: Emergency Medicine Practice has been reviewed and is acceptable for up to 48 Prescribed credits per year by the American Academy of Family Physicians. AAFP Accreditation begins August 1, 2008. Term of approval is for two years from this date. Each issue is approved for 4 Prescribed credits. Credits may be claimed for two years from the date of this issue.
- AOA Accreditation: Emergency Medicine Practice has been approved for 48 Category 2B credit hours per year by the American Osteopathic Association.
- Needs Assessment: The need for this educational activity was determined by a survey of medical staff, including the editorial board of this publication; review of morbidity and mortality data from the CDC, AHA, NCHS, and ACEP; and evaluation of prior activities for emergency physicians.
- Target Audience: This enduring material is designed for emergency medicine physicians, physician assistants, nurse practitioners, and residents.
- Goals & Objectives: Upon completion of this article, you should be able to: (1) demonstrate medical decision-making based on the strongest clinical evidence; (2) cost-effectively diagnose and treat the most critical ED presentations; and (3) describe the most common medicolegal pitfalls for each topic covered.
- Discussion of Investigational Information: As part of the newsletter, faculty may be presenting investigational information about pharmaceutical products that is outside Food and Drug Administration-approved labeling. Information presented as part of this activity is intended solely as continuing medical education and is not intended to promote off-label use of any pharmaceutical product. Disclosure of Off-Label Usage: This issue of *Emergency Medicine Practice* discusses the off-label use of fondaparinux. This issue also states that a bolus of 600 mg of clopidogrel may be more appropriate in the ED than the FDA-approved dose of 300 mg.
- Faculty Disclosure: It is the policy of EB Medicine to ensure objectivity, balance, independence, transparency, and scientific rigor in all CME-sponsored educational activities. All faculty participating in the planning or implementation of a sponsored activity are expected to disclose to the audience any relevant financial relationships and to assist in resolving any conflict of interest that may arise from the relationship. Presenters must also make a meaningful disclosure to the audience of their discussions of unlabeled or unapproved drugs or devices.

In compliance with all ACCME Essentials, Standards, and Guidelines, all faculty for this CME activity were asked to complete a full disclosure statement. The information received is as follows: Dr. Kosowsky, Dr. Yiadom, Dr. Hermann, Dr. Jagoda, and their related parties report no significant financial interest or other relationship with the manufacturer(s) of any commercial product(s) discussed in this educational presentation.

#### Method of Participation:

- Print Semester Program: Paid subscribers who read all CME articles during each Emergency Medicine Practice six-month testing period, complete the post-test and the CME Evaluation Form distributed with the June and December issues, and return it according to the published instructions are eligible for up to 4 hours of CME credit for each issue. You must complete both the post test and CME Evaluation Form to receive credit. Results will be kept confidential. CME certificates will be delivered to each participant scoring higher than 70%.
- Online Single-Issue Program: Current, paid subscribers who read this *Emergency Medicine Practice* CME article and complete the online post-test and CME Evaluation Form at ebmedicine.net are eligible for up to 4 hours of Category 1 credit toward the AMA Physician's Recognition Award (PRA). You must complete both the post-test and CME Evaluation Form to receive credit. Results will be kept confidential. CME certificates may be printed directly from the website to each participant scoring higher than 70%.

Hardware/Software Requirements: You will need a Macintosh or PC to access the online archived articles and CME testing. Adobe Reader is required to view the PDFs of the archived articles. Adobe Reader is available as a free download at www.adobe.com.



Emergency Medicine Practice (ISSN Print: 1524-1971, ISSN Online: 1559-3908) is published monthly (12 times per year) by EB Practice, LLC (5550 Triangle Parkway, Suite 150, Norcross, GA 30092). Opinions expressed are not necessarily those of this publication. Mention of products or services does not constitute endorsement. This publication is intended as a general guide and is intended to supplement, rather than substitute, professional judgment. It covers a highly technical and complex subject and should not be used for making specific medical decisions. The materials contained herein are not intended to establish policy, procedure, or standard of care. Emergency Medicine Practice is a trademark of EB Practice, LLC. Copyright © 2009 EB Practice, LLC. All rights reserved. No part of this publication may be reproduced in any format without written consent of EB Practice, LLC. This publication is intended for the use of the individual subscriber only and may not be copied in whole or part or redistributed in any swithout the publisher's prior written permission — including reproduction for educational purposes or for internal distribution within a hospital, library, group practice, or other entity.



# Group subscriptions are available offering substantial discounts off the regular price.

Please contact Robert Williford, Director of Group Sales, at 678-366-7933 or rw@ebmedicine.net for more information.

**Coming In Future Issues** 

Facial Anesthesia

Meningitis

Subarachnoid Hemorrhage

#### **Binders**

*Emergency Medicine Practice* has sturdy binders that are great for storing all your issues. To order your binder for just \$15, please email ebm@ebmedicine.net, call 1-800-249-5770, or go to www.empractice.com, scroll down, and click "Binders" on the left side of the page. If you have any questions or comments, please call or email us. Thank you!

#### **Emergency Medicine Practice subscribers:**

Your subscription includes FREE CME: up to 48 AMA/ACEP Category 1, AAFP Prescribed, or AOA Category 2B credits per year from current issues, plus an additional 144 credits online. To receive your free credits, simply mail or fax the 6-month print answer form to EB Medicine or log in to your free online account at www.ebmedicine.net. Call 1-800-249-5770 if you have any questions or comments.

Are you prepared for the ABEM LLSA Exam? EB Medicine's LLSA Study Guide is the definitive resource to prepare for the annual ABEM LLSA exam. With it, you receive full article reprints, summaries and discussions of each article, sample questions with answers and explanations, and 35 AMA/ACEP Category 1 CME credits. Order yours today by calling 1-800-249-5770 or visiting www.empractice.com.

#### May 2009 Errata

In the May 2009 issue of *Emergency Medicine Practice*, "Complications In Pregnancy Part II: Hypertensive Disorders Of Pregnancy And Vaginal Bleeding," question 2 was erroneously worded. To be more clear, the question should read: "Which of the following indicates severe preeclampsia?" As reworded, per Table 2 on page 3, answer "d" is correct; the other answers indicate mild preeclampsia. We apologize for any confusion.

## Do you like what you're reading?

Then pass along this issue so a colleague can become a subscriber too – at this special introductory rate: Just \$199 for a full year (12 issues) of Pediatric Emergency Medicine Practice. Plus, you receive 3 free issues for each colleague you refer.

| Check e | enclosed | (payable | to | EΒ | Medicir | ۱e |
|---------|----------|----------|----|----|---------|----|
| 0       |          |          |    |    |         |    |

| Charge m | ý.        |        |
|----------|-----------|--------|
| 🗆 Visa   | $\Box$ MC | □ AmEx |

| Bill | me |
|------|----|
| Dim  |    |

Promotion Code: ISSUEP

| Name of new subscriber:<br>Address: |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|
| Address:                            |  |  |  |  |  |
| City, State, Zip:                   |  |  |  |  |  |
| Email:                              |  |  |  |  |  |
|                                     |  |  |  |  |  |

Colleague's name who referred you:

Send to: EB Medicine / 5550 Triangle Pkwy, Ste 150 / Norcross, GA 30092. Or fax to: 770-500-1316. Or visit: www.ebmedicine.net and enter Promo Code ISSUEP. Or call: 1-800-249-5770 or 678-366-7933.

# EMERGENCY MEDICINE PRACTICE

## AN EVIDENCE-BASED APPROACH TO EMERGENCY MEDICINE

# **EVIDENCE-BASED PRACTICE RECOMMENDATIONS**

#### The Diagnosis And Treatment Of STEMI In The Emergency Department

Kosowsky, J, Yiadom, M. June 2009; Volume 11, Number 6

This issue of Emergency Medicine Practice focuses on managing STEMI in the ED setting using evidence-based practices. For a more detailed discussion of this topic, including figures and tables, clinical pathways, and other considerations not noted here, please see the complete issue at www.ebmedicine.net/topics.

| Key Points                                                                                                                                                                                                                                                                            | Comments                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| In all cases of cardiac ischemia, the treatment objectives are to increase the delivery of blood to myocytes beyond the obstructive lesion and to limit the myocytes' demand for oxygen-carrying and metabolite-removing blood. <sup>7</sup>                                          | What differentiates STEMI therapy from treatment of other cardiac ischemic conditions is the primary therapeutic focus on immediate reperfusion with PCI in a cardiac catheterization laboratory or with fibrinolytic agents given intravenously. <sup>7</sup>                                                                                                                                                        |  |  |  |  |  |  |  |
| Unlike most medical conditions, STEMI is diagnosed with an ECG before a patient's evaluation is complete. The patient's history should be taken while the ECG is being performed and initial therapies are being administered. <sup>25</sup>                                          | Remember that <i>time is myocardium</i> .                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| <ul> <li>Diagnosing a STEMI requires a 12-lead ECG showing:<sup>19,22,23</sup></li> <li>1) ST-segment elevation:</li> <li>≥ 1 mm (0.1 mV) in 2 or more adjacent limb leads (from aVL to III, including –aVR), or</li> </ul>                                                           | Positive tests for cardiac enzymes troponin and creatinine kinase<br>isoenzyme MB are helpful but are not essential. Therapy should<br>not be delayed while awaiting results. Reciprocal depressions (ST<br>depressions in the leads corresponding to the opposite side of the<br>heart) make the diagnosis of STEMI more specific. <sup>19,22,23</sup>                                                               |  |  |  |  |  |  |  |
| <ul> <li>≥ 1 mm (0.1 mV) in precordial leads V4 through V6, or</li> <li>≥ 2 mm (0.2 mV) in precordial leads V1 through V3, or</li> <li>2) A new left bundle-branch block</li> </ul>                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Upon arrival, initial therapies for a STEMI patient include aspirin, supplemental oxygen if oxygen saturation is $< 90\%$ , morphine, and/ or nitroglycerin. In those patients with a confirmed STEMI, heparin should be added if there are no contra-indications. <sup>8,30-37</sup> | Caution should be used with morphine because of emerging evidence that its use increases mortality, as well as with nitroglycerin because of the risk of hypotension and reflex tachycardia. <sup>8,35-37</sup>                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Initiation of reperfusion therapy is the primary focus when treating STEMI patients. This can be done via fibrinolysis (with a targeted door-to-needle time of 30 minutes) or with PCI (with a door-to-needle balloon time of 90 minutes). <sup>8,49,50</sup>                         | Reperfusion outcomes with fibrinolytic therapy, at 30 days post-<br>intervention, are comparable to those with PCI. <sup>42</sup> The most appropri-<br>ate intervention for any given patient is dependent on any contrain-<br>dications to fibrinolysis, the ability to meet the door-to goals, the<br>duration of symptoms, the presence of cardiogenic shock, and the<br>patient's demographic risk of mortality. |  |  |  |  |  |  |  |
| <ul> <li>The Sgarbossa Criteria takes into account the probability of a STEMI in patients with an old left bundle-branch block with each of the criterion:<sup>95</sup></li> <li>1) ST-segment -elevation ≥ 1 mm in a lead with an upward QRS complex (5 points)</li> </ul>           | Criterion 1 is more indicative of a STEMI than is criterion 3, and the more criteria that are met, the more likely that a STEMI has occurred. The Sgarbossa Criteria is highly specific but has low sensitivity; with 0 points, there is still a 16% chance of a STEMI. <sup>95</sup>                                                                                                                                 |  |  |  |  |  |  |  |
| <ul> <li>2) ST-segment depression ≥ 1 mm in V1, V2, or V3 (3 points)</li> <li>3) ST-segment -elevation ≥ 5 mm in a lead with a downward QRS complex (2 points)</li> </ul>                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |

\* See reverse side for reference citations.

5550 Triangle Parkway, Suite 150 • Norcross, GA 30092 • 1-800-249-5770 or 678-366-7933 Fax: 1-770-500-1316 • ebm@ebmedicine.net • www.ebmedicine.net



# REFERENCES

These references are excerpted from the original manuscript. For additional references and information on this topic, see the full text article at ebmedicine.net.

- Kosowsky, JM. Thrombolysis for ST-elevation myocardial infarction in the emergency department. *Crit Pathw Cardiol.* 2006;5(3):141-146. (Review article)
   Antman EM, Hand M, Armstrong PW, et al. 2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation.* 2008;117(2):296-329.
- (Evidence-based practice guideline)
   Myocardial infarction redefined a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction. *Eur Heart J.* 2000;21(18):1502-1513. (Consensus statement)
- Martin TN, Groenning BA, Murray HM, et al. ST-segment deviation analysis of the admission 12-lead electrocardiogram as an aid to early diagnosis of acute myocardial infarction with a cardiac magnetic resonance imaging gold standard. *Am J Coll Cardiol.* 2007;50(11):1021-1028. (Prospective, observational study; 116 patients)
- 23. GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function and survival after acute myocardial infarction. N Engl J Med. 1993;329(22):1615-1622. (Randomized controlled trial; 2431 patients)
- Jayes RL, Beshansky JR, D'Agostino RB, Selker HP. Do patients' coronary risk factor reports predict acute cardiac ischemia in the emergency department? A multicenter study. J Clin Epidemiol. 1992;45(6):621-626. (Multicenter, prospective, observational study; 544 patients)
  - Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet. 1988;2(8607):349-360. (Randomized, controlled, prospective trial; 17,187 patients)
- 31. Barbash IM, Freimark D, Gottlieb S, et al. Israeli Working Group on Intensive Cardiac Care, Israel Heart Society. Outcome of myocardial infarction in patients treated with aspirin is enhanced by pre-hospital administration. *Cardiology*. 2002;98(3):141-147. (Retrospective comparative study; 922 patients)
  - Berger JS, Stebbins A, Granger CB, et al. Initial aspirin dose and outcome among ST-elevation myocardial infarction patients treated with fibrinolytic therapy. *Circulation*. 2008;117(2):192-199. (Retrospective, comparative study; 48,422 patients)
    - Maalouf R, Mosley M, James KK, Kramer KM, Kumar G. A comparison of salicylic acid levels in normal subjects after rectal versus oral dosing. Acad Emerg Med. 2009;16(2):157-161. (Case crossover study; 24 patients)
    - 34. Harrington RA, Becker RC, Ezekowitz M, et al. Antithrombotic therapy for coronary artery disease: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. *Chest.* 2004;126(3 suppl):5138-5488.
  - 35. Rude RE, Muller JE, Braunwald E. Efforts to limit the size of myocardial infarcts. Ann Intern Med. 1981;95(6):736-761
  - Yusuf S, Collins R, MacMahon S, Peto R. Effect of intravenous nitrates on mortality in acute myocardial infarction: an overview of the randomised trials. *Lancet.* 1998;1(8594):1088-1092.
  - 37. Meine TJ, Roe MT, Chen AY, et al. Association of intravenous morphine use and outcomes in acute coronary syndromes: results from the CRUSADE Quality Improvement Initiative. *Am Heart J.* 2005;149(6):1043-1049. (Nonrandomized, retrospective, observational study; 57,039 patients)
  - 42. Acute coronary syndromes. In: 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. *Circulation*. 2005;112(22 suppl):III55-III72. (Consensus statement)
  - Boersma E; Primary Coronary Angioplasty vs. Thrombolysis Group. Does time matter? A pooled analysis of randomized clinical trials comparing primary percutaneous coronary intervention and in-hospital fibrinolysis in acute myocardial infarction patients. *Eur Heart J.* 2006;27(7):779-788. (Meta-analysis; 22 trials, 6763 patients)
  - Andersen HR, Nielsen TT, Vesterlund T, et al. Danish multicenter randomized study on fibrinolytic therapy versus acute coronary angioplasty in acute myocardial infarction: rationale and design of the Danish trial in Acute Myocardial Infarction-2 (DANAMI-2). Am Heart J. 2003;146(2):234-241. (Multicenter, randomized trial; 782 patients)
  - Sgarbossa EB, Pinski SL, Barbagelata A, et al. Electrocardiographic diagnosis of evolving acute myocardial infarction in the presence of left bundle-branch block. N Engl J Med. 1996;334(8):481-487. (Case control study; 131 patients)

# **CLINICAL RECOMMENDATIONS**

#### Use The Evidence-Based Clinical Recommendations On The Reverse Side For:

- Discussions with colleagues
  - Developing hospital guidelines
  - Posting on your bulletin board
- Preparing for the boards
- Storing in your hospital's library
- Teaching residents and medical students

# **Emergency Medicine Practice subscribers:**

Are you taking advantage of all your subscription benefits? Visit your free online account at <u>ebmedicine.net</u> to search archives, browse clinical resources, take free CME tests, and more.

#### Not a subscriber to Emergency Medicine Practice?

As a subscriber, you'll benefit from evidence-based, clinically relevant, eminently useable diagnostic and treatment recommendations for every-day practice. Plus, you'll receive up to 192 AMA/ACEP Category 1, AAFP Prescribed, or AOA category 2B CME credits and full online access to our one-of-a-kind online database. Visit <u>ebmedicine.net/subscribe</u> or call 1-800-249-5770 to learn more today.

#### Questions, comments, suggestions?

To write a letter to the editor, email: JagodaMD@ebmedicine.net. For all other questions, contact EB Medicine: Phone: 1-800-249-5770 or 678-366-7933 Fax: 1-770-500-1316 Address: 5550 Triangle Parkway, Suite 150 / Norcross, GA 30092 E-mail: ebm@ebmedicine.net Web Site: www.ebmedicine.net

Emergency Medicine Practice (ISSN Print: 1524-1971, ISSN Online: 1559-3908) is published monthly (12 times per year) by EB Practice, LLC. 5550 Triangle Parkway, Suite 150, Norcross, GA 30092. Opinions expressed are not necessarily those of this publication. Mention of products or services does not constitute endorsement. This publication is intended as a general guide and is intended to supplement, rather than substitute, professional judgment. It covers a highly technical and complex subject and should not be used for making specific medical decisions. The materials contained herein are not intended to establish policy, procedure, or standard of care. Emergency Medicine Practice is a trademark of EB Practice, LLC. Copyright © 2009 EB Practice, LLC. All rights reserved.

Designed for use in everyday practice



# Thank you for purchasing an *Emergency Medicine Practice* article.

Your article includes CME Credits at no additional charge. You have 2 options to receive credit:

1. Go to <u>www.ebmedicine.net/CME</u> and click the title of the article you purchased.

2. **Mail or fax** the Answer & Evaluation Form on the next page to EB Medicine at the address or fax below.

Please contact us at 1-800-249-5770 or ebm@ebmedicine.net if you have any questions. We are happy to help!



#### Please print the following information clearly:

| Title of Article:                                                            |
|------------------------------------------------------------------------------|
| Namo                                                                         |
| Name:                                                                        |
| Address:                                                                     |
|                                                                              |
| Phone number:                                                                |
| E-mail address (required):                                                   |
| Please write your email address clearly. Certificates will be sent by email. |
| Check here if you need your certificate mailed: 🗖                            |

Accreditation: Please see the article for accreditation information.

**Earning Credit:** To receive credit for this issue, please mail this completed form to 5550 Triangle Pkwy, Ste 150 / Norcross, GA 30092 or fax to 770-500-1316. You must complete both the post-test and Evaluation Form below to receive credit. Results will be kept confidential. CME certificates will be emailed to each participant scoring higher than 70% (please check the box above if you need your certificate mailed). Alternatively, you can take the CME test online at www.ebmedicine.net/CME. If you have any questions, please call **1-800-249-5770** or e-mail ebm@ebmedicine.net.

Subscribing: Emergency Medicine Practice subscribers receive 12 monthly print issues, 48 CME credits per year, and full online access to searchable archives, CME testing, and 144 additional CME credits. To subscribe, call 1-800-249-5770 or enter Promotion Code AFE to save \$50 at

http://ebmedicine.net/subscribe. Subscribing is optional and you are under no obligation. You can receive CME credit for this article whether you choose to subscribe or not.

| Please fill in the appropriate box for                                                    | 1. | [a] | [b] | [c] | [d] | [e] | 9.  | [a]  | [b]  | [c] | [d] | [e] |
|-------------------------------------------------------------------------------------------|----|-----|-----|-----|-----|-----|-----|------|------|-----|-----|-----|
| the correct answer for each question.                                                     | 2. | [a] | [b] | [c] | [d] | [e] | 10. | [a]  | [b]  | [c] | [d] | [e] |
| The test questions appear at the end of the                                               | 3. | [a] | [b] | [c] | [d] | [e] | 11. | [a]  | [b]  | [c] | [d] | [e] |
| issue. Each question has only one correct                                                 | 4. | [a] | [b] | [c] | [d] | [e] | 12. | [a]  | [b]  | [c] | [d] | [e] |
| answer. If there are fewer questions on your issue than listed here, leave the additional | 5. | [a] | [b] | [c] | [d] | [e] | 13. | [a]  | [b]  | [c] | [d] | [e] |
| questions blank. Please make a copy of the                                                | 6. | [a] | [b] | [c] | [d] | [e] | 14. | [a]  | [b]  | [c] | [d] | [e] |
| completed answer form for your files                                                      | 7. | [a] | [b] | [c] | [d] | [e] | 15. | [a]  | [b]  | [c] | [d] | [e] |
| and return it to EB Medicine at the address                                               | 8. | [a] | [b] | [c] | [d] | [e] | 16. | [a]  | [b]  | [c] | [d] | [e] |
| or fax number below.                                                                      |    | _   | _   | _   | _   | _   |     | L .1 | r. 1 | r.1 | r   |     |

Please take a few moments to complete this Evaluation Form. Your opinions will ensure continuing program relevance and quality. Response codes: **5=strongly agree; 4=agree; 3=neutral; 2=disagree; 1=strongly disagree** 

- 1. \_\_\_\_\_ The overall activity content was pertinent to my needs and expectations.
- 2. \_\_\_\_\_ The information was presented in an impartial and unbiased manner.
- 3. \_\_\_\_ I learned information that will enhance my professional effectiveness.
- 4. \_\_\_\_ Adequate faculty disclosure was given.
- 5. \_\_\_\_\_ The test questions were clear and appropriate.
- 6. \_\_\_\_ The information presented in this CME quiz was objective, balanced, and of scientific rigor.
- 7. \_\_\_\_ The authors were NOT biased in their discussion of any commercial product or service.
- 8. \_\_\_\_ The content in this activity is useful in my everyday practice.
- 9. \_\_\_\_ The first CME objective (listed on the cover of the article) was met for this activity.
- 10. \_\_\_\_ The second CME objective (listed on the cover of the article) was met for this activity.
- 11.What clinical information did you learn that was of value to you?
- 12. How did the clinical information you learned impact positively or change the way you care for your patients?
- 13. For future activities, what personal professional gap would you like us to fill?
- 14. What do you like MOST about Emergency Medicine Practice?
- 15. What do you like LEAST about Emergency Medicine Practice?
- 16. Please provide any additional comments.